
Guidance, Navigation and Control of a
Sounding Rocket

Albéric de Lajarte

Master thesis of Robotics

Section de Microtechnique

Swiss Federal Institute of Technology in Lausanne

Supervisor Dr. Colin Jones, Associate Professor, Automatic Control Laboratory

Assistant Supervisor Petr Listov, Doctoral Assistant, Automatic Control Laboratory

June, 2021

Acknowledgements

First, I would like to thanks my parents and my family for their unconditional support throughout

these years at EPFL.

Then my gratitude goes to the EPFL Rocket Team, who gave me the opportunity of a great

adventure with wonderful friends and challenges which taught me so much.

Finally, I would like to thank the Automatic Control Laboratory, and especially Professor Colin

Jones for trusting my project and to Petr Listov who has been a constant support during the

months of hard work. Your precious help and feedback brought this project much further that I

could have hoped.

i

Abstract

A new framework for development and testing of Guidance, Navigation and Control (GNC) al-

gorithms is proposed to support the e�orts of the student association EPFL Rocket Team in

developing a new GNC system for sounding rockets.

This framework includes a complete hardware and software architecture based on the Robot Op-

erating System (ROS), a highly modular middleware that allows the deployment of GNC in most

Linux compatible machines, such as the popular Raspberry Pi for embedded applications, or per-

sonal computer for development and simulations.

This architecture is completed with a new real-time rocket simulator developed as a standalone

ROS package to support testing of the GNC in Software-in-the-Loop, Processor-in-the-Loop or

Hardware-in-the-Loop environment with very little modifications of the GNC.

Two applications of this framework are presented in this thesis. The first one is a GNC de-

veloped to control the maximum altitude of the sounding rocket Bellalui-2, built this year by the

EPFL Rocket Team and scheduled to be launched at 1200 meters in July 2021.

The second one is a more experimental GNC to control a complete Thrust Vector Control system

that could be integrated with the next generation of rockets developed by the EPFL Rocket Team.

ii

List of Tables

1.1 Specifications of the computer board used for the GNC 8

2.1 Rocket launch specifications . 30

3.1 Bellalui 2 rocket specifications . 35
3.2 Requirements for the Navigation algorithm . 36
3.3 Sequence of delays from real lifto� to GNC startup 41
3.4 Sequence of delays from GNC command to engine shutdown 42
3.5 Requirements for the Guidance algorithm . 43
3.6 List of constraints for the Guidance OCP . 46
3.7 Monte Carlo parameters . 50

4.1 Simulation comparison for a typical high-power flight, with and without TVC . . . 70
4.2 Drone V1 specifications . 75

iii

List of Figures

1 The four principal forces of a rocket, and the e�ect of relative wind 2

1.1 Assembled avionics module, without (left) and with (right) its outer aluminium
protection shell. Note that more host boards are shown here to demonstrate the
possibility to extends the stack with new boards . 6

1.2 Complete block diagram of the augmented avionics to include the GNC board.
Image credit: Iacopo Sprenger . 7

1.3 Assembled GNC board and its functions. One can see the three layers of hardware:
in red is the host board, in blue is the custom PCB, and in green is the Raspberry Pi 9

1.4 General architecture of the GNC algorithms . 10
1.5 File tree of a typical GNC package. Each "<package>" has to be replaced with its

real package name . 14

2.1 Complete block diagram of the new simulator, in HIL configuration 17
2.2 Wind gust perturbations (left) and thrust misalignment perturbation (right) 22
2.3 Block diagram of the PIL and HIL setup . 24
2.4 High level block diagram of the HIL configuration 25
2.5 3D position and velocity of the rocket in free fall. No thrust, aerodynamic force, or

external perturbations are added . 26
2.6 3D position and velocity of the rocket when hovering. A lateral thrust is used to

have 1g of acceleration in X and -1g in Y . 27
2.7 Simulation of a rotating rocket around the vertical axis, with initial tilt and weight

compensating thrust. 29
2.8 Simulated ẑb acceleration at 21Hz compared to the acceleration measured by the

on-board IMU . 31
2.9 Simulated altitude compared to the barometric altitude measured by the on-board

barometer . 31
2.10 Simulated gyroscope data (left) compared to the angular rates measured by the

on-board IMU . 32

3.1 Bellalui 2 rocket configuration . 35
3.2 Complete navigation algorithm . 40

iv

3.3 Simplified block diagram of the GNC ROS package used for Bellalui 2 48
3.4 Altitude (left), Vertical speed (middle) and Thrust (right). The cross markers cor-

respond to the navigation estimation and the commanded thrust level, and the plain
line are the simulation data . 49

3.6 Vertical velocity in [m/s] as a function of time in seconds. Without (left), with
(middle) kalman filter correction, and with delay compensation (right). 52

3.7 Processor in the loop hardware setup . 53
3.8 State estimation during a static, horizontal test of 30s. The left column is the

position, middle column is velocity, and right column is the attitude (Euler angles) . 54

4.1 Estimated angle with respect to the vertical (blue) and ẑb acceleration (orange) as
a function of time. These data comes from the launch of the rocket Bellalui 1 in 2020 57

4.2 Black diagram of the sequence of control used for a typical rocket GNC 59
4.3 Euler angle (top), angular rate (middle) and controlled lateral forces (bottom) . . . 65
4.4 Euler angles (left) and controlled lateral forces (right) with a wind of 5 m/s 66
4.5 Simultaneous tracking of the position and attitude of the rocket, with a wind of 5m/s 67
4.6 Reference flight without TVC, with a constant wind speed of 5m/s 68
4.7 Reference flight with TVC activated, with a constant wind speed of 5m/s 69
4.8 Ranking of the criteria . 72
4.10 Jet vane mechanism from Copenhagen Suborbitals 76
4.11 Dynamixel XL-330 servo-motor . 77
4.12 Lift force of one vane, for various angle of attack and combustion chamber pressure 78
4.13 CAD model of the 6 DOF measuring platform . 79
4.14 Thermal test on a steel vane during a static fire test of our hybrid rocket engine . . 80

B.1 Definition of the criteria . 84
B.2 Ranking of the criteria . 84
B.3 Ranking of the criteria . 85

LIST OF FIGURES v

Table of Contents

Acknowledgements i

Abstract ii

List of Tables iii

List of Figures iv

Table of Contents viii

Introduction 1

1 GNC Architecture 4
1.1 Objectives . 4
1.2 Hardware architecture . 5

1.2.1 GNC module . 8
1.3 Software architecture . 10

1.3.1 Overview . 10
Navigation . 11
Guidance . 11
Control . 11
Time synchronization . 12

1.3.2 ROS framework . 13
GNC package . 13

2 Simulator 15
2.1 Features . 16

2.1.1 Rigid body simulation . 18
2.1.2 Aerodynamics e�ects . 20
2.1.3 Perturbations . 21
2.1.4 Sensor simulation . 22
2.1.5 Hardware connection . 23

vi

2.2 Validation . 26
2.2.1 Unit test . 26
2.2.2 Flight test . 29

3 Altitude control 34
3.1 Mission overview . 34

3.1.1 Motivation . 34
3.1.2 Interface . 34

3.2 GNC algorithms . 36
3.2.1 Navigation . 36

INS Model . 37
Kalman filter . 38
Delay compensation . 41

3.2.2 Guidance . 43
MPC model . 43
Apogee prediction . 46

3.3 Implementation and qualification . 47
3.3.1 Simulation . 47

Monte Carlo simulation . 49
3.3.2 Hardware test . 52

Processor-in-the-loop setup . 53
Sensor validation . 53

4 Trust Vectoring Control 56
4.1 Motivation . 56
4.2 Guidance and Control of a TVC system . 59

4.2.1 Control strategy . 59
4.2.2 Guidance, Navigation and Control . 61

Control formulation . 61
Implementation and Results . 64

4.2.3 Conclusion . 70
4.3 Flight model development . 71

4.3.1 Technology trade-o� . 71
4.3.2 Drone model . 73

Mechanical design . 74
Electronic design . 75
Conclusion . 75

4.3.3 Jet vane model . 76

TABLE OF CONTENTS vii

Mechanical design . 76
Electronic design . 77
Jet vane model . 78
Thermal analysis . 79
Summary . 80

Conclusion 82

A INS ground test procedure 83

B TVC trade-o� 84

C Drone test procedure 86

TABLE OF CONTENTS viii

Introduction

Guidance, Navigation and Control (GNC), is a spacecraft subsystem dealing with trajectory plan-

ning and motion control. Specifically, it refers to three components of this subsystem: Navigation

estimates the position, velocity and attitude of the spacecraft; Guidance defines a trajectory from

the current state to the target point, and the Control algorithm controls the spacecraft actuators

to follow the trajectory given the current estimated state. This subsystem is thus a critical part

of any spacecraft aiming to perform complex autonomous missions.

The EPFL Rocket Team (ERT) is a student association aiming to develop sounding rockets from

the ground-up. Its goal is to give students first hands-on experience of aerospace engineering

projects through international competitions, researches, and educational projects. To investigate

advanced control and navigation techniques, a new project called Icarus was started in September

2020 inside the EPFL Rocket Team. This projects does not aim at developing a particular product,

but rather explore various technologies related to GNC, such as active rocket stabilization, Thrust

Vector Control (TVC), controlled apogee and landing.

After a semester of preparation in autumn 2020, a small team of 12 students was form to work on

a Thrust Vector Control prototype, and the associated test facility for ground qualification.

Supervision of the team has been a part of this master thesis, as well as creating a framework

to develop a reliable GNC for the new rocket by designing a new GNC architecture, a real time

simulator for software and hardware testing, and applying these tools and methods to first GNC

prototypes. This report details the results of this work, which should serve as a basis for future

control project supported by Icarus in the future.

1

Rocket system

This section provides the reader some basic knowledge of a rocket dynamic. The rocket is as-

sumed a rigid body, rotating around its center of mass, and subject to the four main forces:

• Thrust: is the force created by the rocket engine by expelling propellant at high speed

through the nozzle. This force is proportional to the mass flow rate and propellant speed.

• Weight: is the force due to Earth gravity and the rocket mass. Weight of the rocket changes

throughout the flight due to the propellant burn.

• Drag: is the aerodynamic force due to air resistance, slowing down the rocket at high speed.

It is colinear with the relative motion of the fluid.

• Lift: is the aerodynamic force due to the fluid being redirected by the rocket surface at high

speed. It is proportional to the rocket angle of attack –, i.e. the angle between the rocket

ẑb axis and the relative wind, which is the apparent velocity of the rocket in the reference

frame of the wind.

Lift N

Thrust T

Drag D

Weight W

zb

xb
yb

Relative wind

zl

xl
yl

Figure 1: The four principal forces of a rocket, and the e�ect of relative wind

In this thesis, two reference frames are considered: the local-level frame is attached to the launch-

pad, with its ẑl axis pointing up and x̂l axis pointing to the North, and the body frame is attached

to the rocket’s center of mass, with the ẑb axis (roll) in the direction of the rocket length, toward

the nosecone, and the x̂b and ŷb axes aligned with those of the on-board sensors, perpendicular to

the rocket surface.

A common misconception is to think about rocket as a pendulum, with its center of rotation at

the top, which could thus be stabilized by having its center of mass close to the bottom. In fact,

most small sounding rockets rather rely on passive stabilization from the lift force. This force

is perpendicular to the fluid motion (relative wind) and its application point is at the center of

pressure, whose position is defined mainly by the rocket geometry. By placing fins at the bottom

of the rocket, the center of pressure can be moved below the center of gravity, so that the lift force

can be used as passive stabilisation torque, aligning the rocket in the direction of relative velocity

(– = 0). The relative wind being the vector sum of the rocket velocity and the external wind

velocity, a launch rail is used at the beginning of the flight to accelerate the rocket vertically at

high speed.

Another way to stabilize a rocket is to steer the thrust force in order to create a torque that

will be controlled by the on-board GNC. For this a TVC system has to be developed to either

steer the rocket engine, or to interact with the exhaust gas to control its direction.

The thrust magnitude being usually very high, a thrust redirection of only 5 to 10 degrees is

typically necessary to control the rocket rotation around its x̂b and ŷb axes (pitch and yaw). By

stabilizing the rocket in di�erent orientations during the thrust phase, lateral forces can be gener-

ated with respect to the local-level frame, which allow to control the complete rocket position and

velocity.

This method is widely used in commercial launchers, as it allows for full control of the rocket states,

and can actively compensates external perturbations during the flight. In our case, it cannot fully

replace the passive fins stabilization, as our rocket also has a coasting phase during which the

rocket engine is shutdowned, and thus the TVC is ine�ective

Chapter 1

GNC Architecture

The first step in this project was to develop a new software and hardware architecture for the GNC

and define interfaces with the rocket electronics and test bench for on-ground validation.

Overall, a complete development and testing framework for our GNC was developed. This chapter

presents the objectives of this new architecture, and describes both hardware and software parts.

1.1 Objectives

First, a description of the previously developed architecture will be presented, to better explain

the rationale behind the new one.

The main electronics of the rocket, called the avionics (AV), is a modular stack of microcontrollers

connected together via CAN bus. The previous navigation and control algorithm were implemented

directly on one of these microcontrollers which had the advantage of simplifying the interface, as the

avionics stack can simply be extended with a dedicated microcontroller for the GNC. The biggest

drawback of this method is the low computational performance which constrain the complexity of

the algorithm. The second issue is due to the complexity of programming these microcontrollers

which led to the algorithms being first developed and tested on the computer with languages

such as Matlab or Python, then ported to embedded C with no guarantee that the tests done on

simulation were relevant anymore. These two issues were probably the cause of the many failed

flights regarding the navigation and control, as the algorithms deployed on the microcontroller

were usually too simple and not tested enough on the real hardware.

From these observations, it was clear that a better framework was needed for the Icarus project,

as the guidance, navigation and control algorithms that will be developed for this project are quite

more complex. The main objectives of the new architecture are presented below:

4

• Portability: The development environment should be very similar to the deployment en-

vironment, so that the modifications needed to embedd the GNC are minimized. Ideally,

it is the deployment environment that should be changed to be closer to what the student

are used to work with, i.e. higher level framework and programming language compared to

bare-metal C.

• Performance: By providing enough processing power to run the GNC, the student can focus

on developing more complex algorithm with little compromise due to hardware limitation,

and less time spent on tuning and deployment.

• Modularity: The architecture shall be easily adaptable to the di�erent prototypes and GNC

that will be developed at the EPFL Rocket Team. These di�erent projects include changes

in the system, mission objective, sensors and actuators.

• Testing: It shall be easy to connect the GNC to di�erent test environments, like simulator

or test bench, so that the GNC can be tested on Software-in -the-Loop (SIL), Processor-in-

the-loop (PIL) and Hardware-in-the-loop (HIL).

• Compatibility: This architecture shall rely as much as possible on the current architecture

and existing hardware, to avoid having to redevelop existing and flight proven functions.

1.2 Hardware architecture

In this section, we describe the current avionics module and the new hardware that was developed

to deploy GNC. As explained before, the avionics is a modular system of four custom microcon-

troller boards called host boards, which are distributed on the rocket and communicating together

via a CAN bus. Each board has specialized hardware connected to it to perform specific functions:

• Sensor board: Host four IMUs (BNO055) with 3D gyroscope and accelerometers, and four

barometers (BME280). The board continuously sample the sensors, and merge them into

one sensor value by removing outliers, and averaging the rest. This allows to have more

robust and more precise sensor data at 21 Hz.

• Telemetry board: Communicate with the ground segment to receive ignition commands,

and transmit flight data via radio telemetry.

GNC Architecture 5

• Propulsion board: Handle rocket engine operations and monitoring by controlling the

main valve to control the thrust and measuring pressure and temperature of the engine in

real time.

• GNC board: New board developed by the Icarus project. Host a Raspberry Pi 4 (Compute

module) to run the GNC algorithms.

A complete block diagram of the hardware is presented on figure 1.2. It can be seen that the host

boards are distributed on two locations: the avionics bay and the valve bay (Propulsion), with

each having its own power supply. The general architecture of the avionics has been developed

during project Eiger (2019) and thanks to its modularity allowed the di�erent boards to be easily

upgraded throughout the years. It also allowed to add our newly developed GNC board without

the need to create new hardware interface. Once manufactured, our host board could simply be

plugged on the CAN and power bus of the avionic bay, and attached to the structure of avionic

module similar to the other telemetry and sensor boards.

Figure 1.1: Assembled avionics module, without (left) and with (right) its outer aluminium pro-
tection shell. Note that more host boards are shown here to demonstrate the possibility to extends
the stack with new boards

GNC Architecture 6

C
M

4
(R

as
pb

er
ry

 P
i)

Se
ns

or
 d

at
a

Th
ru

st
 (&

 J
et

 v
an

es
) c

om
m

an
d

St
at

e
es

tim
at

io
n

C
O

N
TR

O
L

TE
LE

M
ET

R
Y

Ac
tu

at
or

s
fe

ed
ba

ck

PR
O

PU
LS

IO
N

Te
le

m
et

ry

C
AN

 B
U

S

Je
t v

an
es

M
ax

on
 m

ot
or

(T
hr

us
t)

Va
lv

e
ba

y
Av

io
ni

cs
 b

ay

BA
T

SE
N

SO
R

Se
ns

or
s

BA
T

1
&

BA
T

2

H
os

tb
oa

rd
So

ck
et

In
fo

rm
at

io
n

Po
w

er
Ac

tu
at

or

Figure 1.2: Complete block diagram of the augmented avionics to include the GNC board. Image

credit: Iacopo Sprenger

GNC Architecture 7

1.2.1 GNC module

The new GNC board developed by project Icarus is briefly presented here. The development of

this board was done by Iacopo Sprenger during a semester project, and is thus explained in more

detail in his report [1].

At the heart of this module is a Raspberry Pi 4 board, which satisfy the requirements of Perform-

ance and Portability described previously. This single-board computer runs Linux (Raspian)

which allow standard C++ and Python libraries to be used, and has very high performance com-

pared to the STM32 F4 microcontrollers used on the host board, while being easy to embed on our

AV module thanks to its small size. A summary of its important specifications is shown on table 1.1.

Name Raspberry Pi Compute module 4

Processor BCM2711 quad-core ARM Cortex-A72

Frequency 1.5GHz

RAM 4GB

Storage 8GB eMMC

Wireless Bluetooth and WiFi

Dimensions 55*40*4.5mm

Mass 12g

Max. power 15W

Table 1.1: Specifications of the computer board used for the GNC

To interface with a host board, a custom PCB was developed to route power and communication

from host board to Raspberry Pi. As Raspberry Pi requires more power than the host board can

deliver with its buck converter, this Printed Circuit Board (PCB) integrates its own 30W buck

converter, which is directly connected to the battery pin of the host board. To reduce power

consumption, the "Enable" pin of the Raspberry Pi is also controlled by the host board, so that

the Raspberry Pi is kept in the sleep mode during all ground operations, and is only activated a

few minutes before lifto�.

GNC Architecture 8

Raspberry Pi 4

Power
converter

CAN & power bus

I/O pins

Host
board

Figure 1.3: Assembled GNC board and its functions. One can see the three layers of hardware: in
red is the host board, in blue is the custom PCB, and in green is the Raspberry Pi

GNC Architecture 9

1.3 Software architecture

1.3.1 Overview

All the GNC algorithms are directly deployed on the Raspberry Pi using the ROS framework [2],

while the sensor input and the actuators output are managed by the avionics. This separation is

very suitable for testing, as it allows to place the GNC algorithms as is in simulation environment,

test bench, or the real hardware with very little modifications.

The general block diagram of this architecture is presented on figure 1.4.

Microprocessor

Guidance Control

Navigation

trajectory:
- position
- speed
- mass

control:
3D force
3D torque sensor:

- accelerometer
- gyroscope
- barometer

Data acquisition

Actuators

command:
- thrust direction
- thrust level

Avionics

state:
- position
- speed
- angular rate
- attitude
- mass

Interface actuator feedback:
- TVC position
- engine pressure

Figure 1.4: General architecture of the GNC algorithms

On the green box are all the programs running on the Raspberry Pi. The rest of the avionics is

represented with the blue box and provides mainly sensor input (Data acquisition) and actuator

output. The interface with the GNC is done on the Raspberry Pi, handling the low level UART

communication with the host board, and converting data between ROS messages and UART

packets.

The Guidance, Navigation and Control algorithms will be explained in more detail on the following

sections. However, the exact implementation of these algorithms will be presented in the following

chapters, as they depend on the type of mission and system considered.

GNC Architecture 10

Navigation

The Navigation algorithm is responsible of estimating the full state of the rocket in real time.

Using the sensor data provided by the AV, it has to reconstruct the position, velocity, attitude,

and angular rate. The mass of the rocket is also estimated, as it varies significantly during the

flight.

Traditionally, a Kalman filter is used to merge sensor data with a prediction of the rocket state

from the rocket equation of motion. This allows to have a high refresh rate of around 100Hz, as

the state prediction can be done independently of the sensor update.

Guidance

The Guidance algorithm has the task of taking the high level objectives defined by the user, such

as the target apogee and the state constraints, and finding an optimal trajectory to the targeted

state defined by the user.

Typically, the rocket equations of motion are used to connect these two states, and knowledge

of the rocket properties such as mass, aerodynamic coe�cients or actuators limits are used to

compute a feasible trajectory. Fuel consumption serves as a minimisation criterion.

This guidance strategy is thus very flexible and could be used as much for ascent guidance, as it

could be used for descent and landing planning. As it will be presented in the following chapters,

a Model Predictive Control (MPC) is a very good candidate for this algorithm, as it naturally

integrates knowledge of the system dynamics and user constraints to find an optimal trajectory.

To take into account external perturbations and model errors, this trajectory should be recomputed

periodically and sent to the Control algorithm at around 5Hz.

Control

The Control algorithm is the last stage of the GNC. Using the state estimation from Navigation

and the trajectory target from Guidance, it has to send commands to the actuators to control the

thrust direction and magnitude.

Because the Guidance is already working on the long term trajectory, the Control is focused more

on short term targets, without having knowledge of the flight long-term objectives. This is quite

important, because besides following the Guidance trajectory, the Control also has to stabilize the

rocket close to the vertical orientation, which requires a higher control frequency of around 50Hz

GNC Architecture 11

to compensate for external perturbations.

By controlling the thrust direction of the engine, the Control can slightly pitch the rocket away from

the vertical and control its horizontal position and velocity. As the rocket is mainly vertical, the

altitude and vertical speed are primarily controlled by the thrust magnitude. Finally the propellant

consumption is controlled by the duration and magnitude of the main thrust. By blindly following

a trajectory in position, velocity and mass as a function of time, the Control can thus meet the

objective of propellant consumption defined by the Guidance optimal trajectory, without having

to solve itself the complete flight optimization problem.

In theory, a simple controller such as the cascade controllers used for drones could be used for

Control. However, the current strategy is to use MPC due to its capability to handle directly

complex system.

Time synchronization

The algorithms are running asynchronously, meaning that they continuously do their work at a

fixed frequency, without waiting for information from other algorithms.

For example, the Guidance and Control just use the last received state estimation to compute the

optimal trajectory and control, which makes them more robust in case Navigation fails or its state

message is lost. One exception to this is the Interface algorithm which is synchronized to input

and output messages to relay them directly and minimize delays.

To have the di�erent algorithms working well together, it is important to have a common time

and state machine. For this, a dedicated algorithm is used to estimate the phase of the flight, and

the time since lifto�, which serves as a reference to all algorithms. The phases are:

• Idle: The initial state of all algorithms at startup. Corresponds to the time when the rocket

is on the launch rail.

• Rail: The engine is ignited and kept at full throttle so that the rocket gains a maximum of

speed while it is on the launch rail. All algorithms start to run, except for the Control.

• Launch: The rocket has exited the launch rail and is now fully controllable. All algorithms

are thus fully active.

GNC Architecture 12

• Coast: The engine has been stopped, and the rocket is decelerating due to gravity and drag,

No more Thrust Vector Control is possible, Control is stopped.

1.3.2 ROS framework

ROS (Robot Operating System) [2] is a middleware which provides a set of programming tools

for robotic projects. One of the key feature of ROS is its peer-to-peer connectivity which allows

communication between several processes called nodes. ROS is language-neutral, so di�erent nodes

can use di�erent programming languages and can be distributed across di�erent machines on the

same network. This allows for very modular programming as each function can be separated into

di�erent nodes. Several nodes can be regrouped into a package, which provides a coherent set of

functions. Popular open-sources packages includes for example Rviz and RQt for 3D visualization

and building graphical interfaces respectively. As the project can easily integrates several packages,

we can use these packages as is.

GNC package

The algorithms described in the previous section are all integrated in one package. This includes

the algorithms, configuration files and scripts utilities. Figure 1.5 shows the minimum organization

of a GNC package. The functions of each folders are:

• /config: Contains the YAML configuration files used to define the rocket and launch envir-

onment parameters.

• /launch: Contains ROS launch files to start di�erent nodes combinations, depending on the

environment: real flight, software in the loop (SIL) or processor in the loop (PIL).

• /log: Contains one log file per flight. Use rosbag to replay the content of the file.

• /script: Contains python scripts needed by the user for data parsing and analysis, for in-

stance.

• /source: Contains the source code of the GNC algorithms.

GNC Architecture 13

GNC package

/config

/launch

/log

/script

/source

CMakeLists.txt package.xml README.md

environment_
parameters.yaml

rocket_
parameters.yaml

<package>_PIL.launch <package>_SIL.launch <package>_flight.launch

log1.log log2.log ...

node1.py node2.py ...

<package>_
navigation.cpp

<package>_
control.cpp

<package>_
guidance.cpp

Figure 1.5: File tree of a typical GNC package. Each "<package>" has to be replaced with its real
package name

Of course this organization can be completed with new folders and files to suits the needs of each

project. The idea is to have a separate package for each new GNC project. Common utilities like

post-processing scripts and custom ROS messages definition are placed on the simulator package

that will be presented in chapter 2, as these are common to all GNC projects.

This modular architecture will allow to develop multiple GNC projects for the drone and rockets

prototypes that will be presented in the following chapters. Once tested on the computer, these

packages can be directly compiled and run on the Raspberry Pi, making the GNC adjustable to

various simulation and tests environments as it will be shown in the following chapter.

GNC Architecture 14

Chapter 2

Simulator

The first step to test the GNC project is simulations. The simplest form of this is a SIL con-

figuration where the GNC software is directly linked to an external simulation program on the

same machine. This allows fast development and debugging of the GNC as it doesn’t need to be

deployed every time a change is made.

However, this is usually not enough for aerospace applications, the hardware that will be running

the GNC needs to be tested. In this project, we separate these tests in two configurations: first

the embedded processor is tested with PIL configuration with the GNC deployed on the hardware

and connected only to the simulator. Finally, the real actuators can be tested HIL configuration,

by having the full system mounted on a test bench, and direct measurement of the actuators being

used in real time to drive the simulation. The latter configuration has not been implemented yet,

but would allow very reliable ground testing of the GNC.

Until now, the existing simulator did not have these features. A previous Matlab simulator [3] has

been used until now to do open-loop simulations of rocket flights to help design the rocket and its

engine, but this simulator cannot interface with complex GNC to do closed-loop simulations, is

not real time, and would be hard to link with our hardware.

Thus, a new simulator was developed from the ground-up. This chapter explain all its features, as

well as the development and test process.

15

2.1 Features

To make the simulator highly compatible with the GNC architecture described previously, the ROS

framework is used. Most of its features are distributed on di�erent nodes running asynchronously,

which makes the simulator very modular to be configurable and adaptable.

The complete block diagram of this simulator is shown on figure 2.1. The HIL configurations

is presented as it is the most complex one. For PIL configuration, the test bench module is simply

removed. For SIL configuration, the TVC system and CAN interface are also removed, so that the

GNC algorithm can be directly connected to the Simulator. But in general the working principle

is the same for all configurations. The Simulator computes in real time the full state of the rocket

based on its previously computed state and the commands from the GNC. This state is used to

emulate sensor data that are sent to the GNC to update its control commands.

As the simulator uses ROS, many utilities can be used, like the complete logging of nodes interac-

tions, 3D visualization and live plots, and simulation configuration with YAML files.

Simulator 16

+

R
O

S
ut

ilit
ie

s

In
te

gr
at

or

D
is

tu
rb

an
ce

ac
tu

at
or

:
3D

 fo
rc

e
3D

 to
rq

ue

pe
rtu

rb
at

io
ns

:
3D

 fo
rc

e
3D

 to
rq

ue fa
ke

 s
en

so
r:

- I
M

U
- b

ar
om

et
er

R
oc

ke
t

de
fin

iti
on

En
vi

ro
nm

en
t

de
fin

iti
on

Pe
rtu

rb
at

io
ns

de
fin

iti
on

YA
M

L
co

nf
ig

ur
at

io
n

fil
es

Si
m

ul
at

io
ns

 d
at

a

Si
m

ul
at

ed
st

at
e

co
nt

ro
l

gu
id

an
ce

pe
rtu

rb
at

io
ns

na
vi

ga
tio

n

Lo
gg

in
g

Li
ve

vi
su

al
iz

at
io

n

G
N

C
 a

lg
or

ith
m

s

TV
C

 s
ys

te
m

C
on

tro
l

ac
tu

at
or

s

Ac
tu

at
or

fe
ed

ba
ck

Te
st

 b
en

ch

M
ea

su
re

fo

rc
e

&
to

rq
ue

Si
m

ul
at

or

H
ar

dw
ar

e
Ae

ro
dy

na
m

ic

ae
ro

 e
ffe

ct
s:

3D
 fo

rc
e

3D
 to

rq
ue

C
AN

in
te

rfa
ce

Po
st

-p
ro

ce
ss

in
g

&
vi

su
al

iz
at

io
n

Figure 2.1: Complete block diagram of the new simulator, in HIL configuration

Simulator 17

2.1.1 Rigid body simulation

The dynamic of a rocket is modelled as a six-degree-of-freedom rigid body with varying mass [4].

One node called integrator is in charge of summing all forces and torques acting on the rocket, and

by using Newton-Euler equations, we can derive the ordinary di�erential equations of the rocket

motion. These equations are then numerically integrated using Boost Odeint C++ library.

The first force to consider is the weight w of the rocket:

w(mp, pz) = ≠mtot ú g ú ẑl = ≠(mdry + mp) ú µE

(RE + h0 + pz)2 ú ẑl (2.1)

with mdry the dry mass of the rocket, and mp the propellant mass, varying with time. The vari-

ation of gravitation is modelled using µE, the standard gravitational parameter of the Earth, and

the distance of the rocket to the center of the Earth with RE the Earth radius, h0 the ground

altitude and pz the altitude above ground level. This force depends thus on the propellant mass

and vertical position states. It is colinear with the vertical axis ẑl of the local-level frame.

The second force is the controlled force and torque generated by the rocket actuators. It is

primarily composed of the thrust of the engine, but can also take into account other actuators

such as airbrakes or cold gas thrusters:

Y
___]

___[

fl
c = RB ú

5
f b

x f b
y f b

z

6T

· l
c = RB ú

5
· b

x · b
y · b

z

6T (2.2)

These two vectors being in body frame, they have to be transformed to the local-level frame using

the rotation matrix RB:

RB =

S

WWWWWU

q2
w + q2

x ≠ q2
y ≠ q2

z 2(qx ú qy ≠ qw ú qz) 2(qx ú qz + qw ú qy)

2(qx ú qy + qw ú qz) q2
w ≠ q2

x + q2
y ≠ q2

z 2(qy ú qz ≠ qw ú qx)

2(qx ú qz + qw ú qy) 2(qy ú qz + qw ú qx) q2
w ≠ q2

x ≠ q2
y + q2

z

T

XXXXXV

Simulator 18

This rotation matrix is computed using the quaternion state q = (qw, qx, qy, qz) with qw the real

part and (qx, qy, qz) the vector part of the quaternion.

Finally, the aerodynamics e�ects fa and · a, and external random perturbations fp and · p are

added. Due to their complexity, they are computed on two separate nodes and will be presented

in the following sections.

The four forces and four torques can be summed to get the total force and torque ftot and · tot

which can be used as the starting point of the di�erential equation:

x =

S

WWWWWWWWWWWWU

pl

vl

q

wl

mp

T

XXXXXXXXXXXXV

ẋ =

S

WWWWWWWWWWWWU

vl

fl
tot

mtot

0.5 ú wl ¢ q

· l
tot ú (Rb ú Ib)≠1

fz

g0úIsp

T

XXXXXXXXXXXXV

(2.3)

The state vector x is composed of the position p, the velocity v, the quaternion q, the angular

rate w and the propellant mass mp. All states are in local-level frame.

The inertia matrix Ib is in body frame for simplicity reason, and is used to compute the angular

acceleration from the total torque. The parameter Isp is the specific impulse of the rocket engine,

relating engine thrust force to the propellant mass variation.

Using the odeint C++ library, these di�erential equations can be solved with the Dormand-Prince

method (runge_kutta_dopri5). Currently, the integration step size is 10ms, and a new integration

is made every 10ms so that the simulation is real time. On a standard laptop, the integration

computation takes less than 200 microseconds, so if need be, the integration step could be reduce

even more to get a better resolution.

The previous version of this node was programmed in Python, so due to performance issues, the

maximum integration period that could be obtain was only 50ms, which made the simulation

unreliable and diverging after some time.

Simulator 19

2.1.2 Aerodynamics e�ects

Our rocket launches being at low altitude, aerodynamic forces have very important e�ects that

need to be taken into account.

Due to the complexity of modeling these e�ects using analytical equations, an already existing

Python transcription of the previous matlab simulator was used and wrapped on a separate ROS

node. This program uses the current state of the rocket, its geometry, and environmental condi-

tions such as wind speed and ground pressure to compute the drag and lift forces and torques.

A brief description of these forces will be given here. For the full details of the aerodynamics

e�ects, please refer to [3].

The drag force is the resistance of an object when moving through a fluid. It is colinear and

in the direction of the relative fluid motion:

D = 1
2 ú fl ú Cd ú Aref ú v2

rel (2.4)

The fluid relative velocity is vrel, and its density is fl. The geometry of the object is represented

with its cross-section surface Aref and its drag coe�cient Cd. This drag coe�cient is dependent on

the mach number and angle of attack of the rocket, but in practice is constant for most of the flight.

Similarly, the lift force can be expressed as

L = 1
2 ú fl ú Cn– ú – ú Aref ú v2

rel (2.5)

With Cn– the lift coe�cient. Note that here the lift increases with the angle of attack –, which is

the angle between the ẑb axis of the rocket and the fluid motion. Because the rocket has lateral

velocity, and a constant wind speed is used throughout the simulation, – varies typically between

0° and 90° during the flight, reaching its maximum at lifto� and apogee due to the low rocket

velocity.

Both of these forces are applied at the center of pressure of the rocket, which is determined by

Simulator 20

the geometry of the rocket as the weighted average of the lift coe�cient of each rocket component:

fins, body, nosecone, etc.

By design, the center of pressure is placed between 2 and 5 body diameters away from the center

of pressure, so that the lift force generates a corrective moment to stabilize the rocket at low angle

of attack.

2.1.3 Perturbations

To test the robustness of the GNC, and add variability to our simulations, random perturbations

forces and torques are added. These perturbations represents small e�ects that are di�cult to

model with certainty or that are inherently stochastic.

These e�ects are modelled in a separate node called disturbance.py, and tuned using the perturba-

tions_parameters.yaml file.

At the moment, only two types of perturbations are modelled. The first one is due to wind gusts

acting non-uniformly on the rocket. This is modelled using the drag equation 2.4, and horizontal

gusts of wind with a velocity following a Gaussian distribution around the constant wind of the

simulation. The non-uniformity of the wind gust is modeled by applying the resulting force at a

random point along the rocket length, which can thus generates destabilizing torques.

The second perturbation is the thrust misalignment with respect to the center of mass. This

can be due to the rocket engine being not centered well, or tilted with respect to the rocket ẑb axis,

or the center of mass not being in the center of the rocket. All of these results in lateral forces

creating a constant torque. To add variability, the exhaust gas is also modelled as a jet with small

random variation in direction.

These two e�ects are represented on figure 2.2. Many other e�ects could be added on this node to

assess the robustness of the GNC to manufacturing errors such as fin tilt creating a roll (ẑb axis)

torque or drag asymmetry due to the rocket being not perfectly symmetric.

Simulator 21

dCM

Thrust T

Individual wind gust

Total wind gust

Figure 2.2: Wind gust perturbations (left) and thrust misalignment perturbation (right)

2.1.4 Sensor simulation

To interact with the GNC algorithm, the simulator has to send information in the form of sensor

measurements, as the GNC expects them during a real flight. Currently, the avionics has three

types of sensors: three-axes accelerometer and three axis gyroscope integrated into an Inertial

Measurement Unit (IMU), and barometer. These measurements are relatively simple, and can

thus be directly generated when the state is updated inside the integrator node [5].

The accelerometer model is:

ab
IMU = Rb≠1 ú (v̇ + g ú ẑl) + ra , ra ≥ N(µa, ‡2

a) (2.6)

v̇ is the time derivative of the velocity in local-level frame to which the gravity vector gúẑl has to be

added to get the true acceleration due do external forces. Then using the inverse rotation matrix

Simulator 22

Rb≠1, this acceleration is transformed to the body frame in which our strap-down IMU is attached.

Finally, Gaussian noise is artificially added with the vector ra having mean and variance µa and ‡2
a.

The gyroscope model is a bit simpler, as we simply have to transform the angular velocity state

wl from local-level to body frame, and add predefined noise:

wb
IMU = Rb≠1 ú wl + rw , rw ≥ N(µw, ‡2

w) (2.7)

Finally the barometer data is directly generated from the vertical position state:

hbaro = pz + rb , rb ≥ N(µb, ‡b) (2.8)

This set of sensor data could easily be extended with this method, for example to simulate data

from a Global Navigation Satellite System (GNSS) receiver or a magnetometer, which are real

sensors likely to be integrated in the avionics in the future.

2.1.5 Hardware connection

The features described above allow to run SIL simulations by having the GNC and the simulator

in two separate ROS packages on the same computer and started together with a dedicated launch

file. Custom ROS messages allow e�cient communication of the simulated sensor and the GNC

commands between the two packages.

To run PIL simulations, the GNC package has now to be deployed on the Raspberry Pi, while

the simulator package is kept on the computer. The first idea was thus to use a feature of ROS

which allow nodes to be started on di�erent machines of the same local network, with very little

modification to the packages themselves. However, this method proved to be unreliable due to do

the high communication delay over network of around 6ms, with spikes up to 15ms.

A di�erent approach was thus taken. As the avionics consists of a modular stack of board, it

is easy to remove or shutdown the sensor board, which will be replaced by the simulator, sending

simulated sensor data to the AV CAN bus instead of the sensor board.

Simulator 23

As shown in figure 2.3, the same hardware architecture is used, as presented in chapter 1, and the

Simulator can simply be plugged in the CAN bus as any other host board would be.

CAN BUS + POWER

Sensor boardTelemetry boardGNC boardPropulsion board

Sensor
data

State
estimation

Sensor
data

State
estimation

Ground
commands

Actuator
feedback

GNC
commands

GNC
commands

Simulator

Simulation ROS utilities

CAN interface

Sensor
data

GNC
commands

Battery
Battery

Figure 2.3: Block diagram of the PIL and HIL setup

A dedicated node called CAN_interface takes care of the ROS messages to USB message conver-

sion, then a USB to CAN hardware adapter is used for the physical connection to the CAN bus.

This configuration allows any host board to be removed or added depending on what needs to be

tested. A minimal configuration with only the GNC board and the Simulator communicating via

CAN is thus possible, but other host boards can be added to test their compatibility with the

GNC. Typically the Telemetry board can transmit the GNC activation command to power on the

Raspberry Pi, and send back to the ground station the state estimation from the GNC, and the

Propulsion board can control the actuators to assess the e�ect of the GNC commands.

To avoid interference with the simulation, the Sensor board has to be completely deactivated.

As the Propulsion board also sends back actuator feedback, it must be deactivated too if in PIL

Simulator 24

configuration, as the rocket engine won’t be used, and thus the Simulator provides actuator feed-

back.

To run HIL simulations, the Propulsion board is activated and connected to the rocket engine

as usual. A complete 6DOF test bench measuring all forces and torques is also used to feedback

the real e�ect of the actuators to the Simulator, as it was shown in figure 2.1.

For now, the HIL configuration is not fully ready, as the test bench is still under development

and some work is still needed to configure the Simulator properly to work with this test bench.

Typically the simulation part of the Simulator should be deployed on a dedicated Raspberry Pi so

that it can retrieves directly the force and torque measurement from the test bench’s electronics.

The visualization tools from ROS can be kept on a laptop connected to the same ROS network as

the Raspberry Pi, in order to provide feedback to the user in real time. This configuration would

also allow the user and expensive computer to be kept at a safe distance, and place the less risky

equipment such as the Raspberry Pi and the test bench close to the rocket engine for maximum

performance.

Raspberry Pi

Simulation

CAN interface

AvionicsRocket engine

Test bench

Control

Simulate
flight

Measure

Laptop

ROS utilities

Figure 2.4: High level block diagram of the HIL configuration

Simulator 25

2.2 Validation

Before using this Simulator, it is important to thoroughly test it, as a large part of the ground

testing will rely on the accuracy of our simulations.

2.2.1 Unit test

The first simple tests are units test. These are simple motions that are easy to analyse such as 1

DOF translation and rotation. Here, the result of the simulator can directly be compared to those

of analytical formula.

We start our series of unit tests with a free fall, without any perturbations or aerodynamic ef-

fects.

Figure 2.5: 3D position and velocity of the rocket in free fall. No thrust, aerodynamic force, or
external perturbations are added

Simulator 26

We see in figure 2.5 the classic parabola for the altitude, and linear curve for the vertical speed.

The final position and altitude at 60 seconds matches perfectly the theory. Lateral position and

speed, as well as the attitude of the rocket are all kept constant as expected. Exactly the same

results were obtained regardless of the initial rocket orientation.

Then a hovering test is made. The rocket thrust is kept vertical, and compensating perfectly

the weight, The Isp parameter is overwritten with a very high value so that mass variation due to

the rocket thrust is kept minimum.

Figure 2.6: 3D position and velocity of the rocket when hovering. A lateral thrust is used to have
1g of acceleration in X and -1g in Y

As we can see in figure 2.6, slight numerical imprecision result in a deviation of -0.6mm in altitude

after 60s, which is quite acceptable. Lateral motion is exactly as expected due to 1g of acceleration

in x̂l and -1g in ŷl.

Simulator 27

The last test of the 3D rigid body simulation involves both rotations and translations in 3D.

The rocket is initially tilted at 45° around the ŷl axis, and has an angular velocity around the ẑl

axis of one rotation per second. The only forces are the constant weight of the rocket and the

thrust of the engine, which is scaled to exactly compensate the weight of the rocket in the ẑl axis.

The total force on the rocket is thus:

ftot = Rz(◊) ú Ry ú fb
c + w (2.9)

with w the weight and fb
c =

5
0 0 mtot ú g ú

Ô
2

6T

the rocket thrust in body frame. A first con-

stant rotation matrix Ry is used to represent the initial 45° tilt, and a second rotation matrix

Rz(◊) represents the rotation around the ẑl axis due to the angular rate wz.Then ◊ = wz ú t, with

t the time since the start of the simulation.

After simplification of this equation and double integration to get the velocity and position, we

have the following analytical result:

ftot = mtot ú g ú

S

WWWWWU

cos(wz ú t)

sin(wz ú t)

0

T

XXXXXV
v = g

wz
ú

S

WWWWWU

sin(wz ú t)

1 ≠ cos(wz ú t)

0

T

XXXXXV
p = g

w2
z

ú

S

WWWWWU

1 ≠ cos(wz ú t)

wz ú t ≠ sin(wz ú t)

0

T

XXXXXV

(2.10)

The average force over time is zero, so the velocity vector is constant. This constant equal zero

for the x̂l and ẑl axes, so their position is constant, whereas the average velocity along the ŷl axis

is positive, which creates a close to linear increase in position. This was verified in the simulation

with the 3D visualization tool, and the graph shown in figure 2.7.

Simulator 28

Figure 2.7: Simulation of a rotating rocket around the vertical axis, with initial tilt and weight
compensating thrust.

2.2.2 Flight test

The complete simulator is tested by comparing it with flight data from 2020 high altitude rocket

launch. This flight aimed at reaching 1200m with a solid propellant motor so no throttling was

possible. However, the same avionics and sensors were used during the flight so we can directly

compare the simulated IMU and barometric data to the logged sensor data.

The specifications of this flight are summarized in table 2.1.

Due to lack of data about the environmental condition of this flight, typically wind speed, atmo-

sphere conditions and launch rail orientation, it is not possible to perfectly match the simulation

and flight data. Thus this test serves more as a high-level test to verify all the features of the

simulator are working as expected for a typical flight.

Simulator 29

Specification Value
Location and time Wasserfallen 2020
Rocket model Eiger/Bellalui 1
Target altitude 1200m
Motor Solid motor (M2400)
Lifto� mass 45.25 kg
Length 4.16m
Sensor data IMU, barometric altitude, temperature
Logging frequency 16.7 Hz

Table 2.1: Rocket launch specifications

Another di�culty is that the solid-propellant rocket motor used for these kind of flights have high

variability of up to 10% in their thrust curve, resulting in di�erent acceleration profiles for di�erent

motors of the same category. We can observe this on figure 2.8, where the simulated acceleration

along the ẑb axis of the rocket, computed from the nominal thrust curve given by the manufacturer,

has significant di�erence compared to the measured acceleration during the flight.

However, this di�erence is mainly in term of distribution of the thrust over time, so the average

acceleration error is only 1.5m/s2. This means that the total energy (total impulse) given to the

rocket by the motor is very similar, and we should expect the simulated apogee altitude to be close

to the measured one.

Simulator 30

Figure 2.8: Simulated ẑb acceleration at 21Hz compared to the acceleration measured by the
on-board IMU

The resulting altitude of the rocket over time is presented in figure 2.9. We see similar altitude

at the apogee, though the flight profiles are slightly di�erent, probably due to the di�erent thrust

curve of the rocket engine.

Figure 2.9: Simulated altitude compared to the barometric altitude measured by the on-board
barometer

Simulator 31

The last type of sensor to verify is the three axis gyroscope. The simulated sensor data and the

measured data are compared in figure 2.10.

Time [s] Time [s]

Figure 2.10: Simulated gyroscope data (left) compared to the angular rates measured by the
on-board IMU

The major di�erence to be observed is the di�erence of roll angular rate (ẑb axis). From what was

measured during the flight, it seems that slight tilting of the fins due to manufacture imperfections

led to spinning of the rocket. This e�ect is well known and sometimes used to spin-stabilize sound-

ing rockets [6]. However, this e�ect is not modelled in the simulator, as the fins are assumed to be

perfectly straight. As discussed in section 2.1.3, it could be added in the perturbations modelling

node in the future to get more realistic flight simulation.

The two other axes are more interesting, as they play an important role in the stability of the

rocket. As we see in figure 2.10, the simulation is very similar to the flight data, with the oscilla-

tions in the x̂b and ŷb axes having close amplitude and frequencies.

Simulator 32

Conclusion

In this chapter, the main features of the simulator have been presented, as well as some of the

important tests that have been made to demonstrate its performance and reliability.

Though more complex to install and use than the previous Matlab simulator of the EPFL Rocket

Team, or existing open-source simulator such as OpenRocket [7], it is also more adapted to the

development of GNC projects due to its real-time capability and the possibility to easily connect

it to external GNC algorithms and hardware.

Due to its modular architecture, it is easy to add new features or better models of the flight

dynamics and perturbations. However, as it will be shown in the following chapters, the current

version of this simulator is quite su�cient to develop GNC algorithms to flight-ready versions.

It it thus highly advised to the following students who will be working on the Icarus project to

continue using this simulator for their personal projects.

Simulator 33

Chapter 3

Altitude control

3.1 Mission overview

3.1.1 Motivation

To win the Spaceport America Cup, the rocket has to reach precisely a predefined altitude at the

apogee. Thus the strategy of the EPFL Rocket team is to have active control during the flight to

compensate for simulations error and uncertainties on the environment and motor performance.

Previous projects called project Matterhorn [8] and project Eiger [9] relied on airbrakes which are

aerodynamic surfaces that can be extended out of the rocket to increase its drag, and simple al-

gorithms for navigation and control of these airbrakes. Unfortunately, in three years this strategy

has never been successful, mainly due to lack of time and proper tools to test the GNC on the

ground and its integration on the rocket. This year, the Bellalui 2 project still intends to actively

control the altitude of its apogee using the throttling capability of its newly developed hybrid

rocket engine to modulate the thrust during the flight.

In addition to being useful for the mission of project Bellalui 2, this project provides a simple

use case to demonstrate the e�ectiveness of the simulator presented in chapter 2 for ground qual-

ification, and will be the first in-flight demonstration of the software and hardware architecture

presented in chapter 1.

3.1.2 Interface

Following the architecture defined in chapter 1, the GNC module is integrated on the avionic (AV)

subsystem of the Bellalui 2 rocket. An overview of the rocket configuration is shown in figure

34

3.1, with the Avionic in the center of the rocket. Below it is the hybrid engine with its custom

electronics to control the thrust of the engine.

Figure 3.1: Bellalui 2 rocket configuration

The avionics provides to the GNC barometric and IMU data. The IMU is a three axis accelero-

meter and gyroscope sensor, and the barometer provides directly the altitude above ground level,

correcting for temperature variations.

To provide more reliable data, a pre-processing algorithm was developed by the avionics team to

merge sensor data from four IMUs and four barometers before sending them to the GNC. Each

sensor data is sent at a fixed frequency of 21Hz.

Then the propulsion’s electronics manage the low-level control of the rocket engine, receiving high

level thrust commands from the GNC, and sending back pressure and temperature data of the

engine.

Finally, the main specifications of this rocket are presented on table 3.1. Note that the loaded

mass and the burn time can be adjusted to reach the desired target apogee and maximum speed.

Specification Unit Value
Length mm 3363
Cross-section diameter mm 156.8
Dry Mass kg 32.947
Max. loaded mass kg 41.647
Thrust range N 1500 to 3000
Burn time s 11.5
Max speed m/s 229
Targeted apogee m 3048

Table 3.1: Bellalui 2 rocket specifications

Altitude control 35

3.2 GNC algorithms

In this section, the Navigation and Guidance algorithm used for the mission are presented.

The same notation is used as in the previous chapters, with the vectors in lowercase bold font,

and the matrices in uppercase bold font. The same two reference frames are also used: the body

frame (superscript b), attached to the rocket with the ẑ axis along its length, and the local-level

frame (superscript l) , attached to the launch rail with the ẑ axis up and the x̂ axis pointing to

the North.

3.2.1 Navigation

We use the standard approach [10] [11] of using an Inertial Navigation System (INS) in conjunction

with a Kalman filter to estimate the full state of the rocket. A barometer is used to correct the

vertical position and velocity errors from the direct integration of the IMU measurements. This

method makes the Navigation quite flexible to be upgraded in case new sensors such as a GNSS

or magnetometer would be integrated by the avionics team to increase the precision and stability

of the state estimation.

The requirements to make the Navigation comply with the mission are presented in table 3.2.

ID Name Description

2021-LV-KF-OP-01 Sensor

The navigation shall use the available IMU (3DOF ac-

celerometer and gyroscope) and barometer data from

the avionics

2021-LV-KF-OP-02 Output
The Navigation shall estimate 3D position, velocity, at-

titude, and the mass of the rocket

2021-LV-KF-FCT-02 Frequency
The Navigation shall compute a new state estimation at

a frequency of 100Hz

2021-LV-KF-VF-01 Testing
The Navigation shall be tested on simulation, with the

avionics module on the ground, and during a test flight

2021-LV-KF-INT-01 Communication
The Navigation shall transmit the vertical velocity and

position in real time to the avionics via the CAN bus

Table 3.2: Requirements for the Navigation algorithm

Altitude control 36

INS Model

By integrating the 3D acceleration and gyroscope data from the IMU, the complete 3D position,

speed and orientation of the rocket can be estimated using dead reckoning [12]. The mass variation

of the rocket due to propellant consumption is assumed to be proportional to the rocket thrust.

By noting x the state vector composed of the 3D position p, velocity v, attitude quaternion q,

angular rate w and mass m, we find ẋ the time derivative of x from Newton-Euler ordinary

di�erential equation:

x =

S

WWWWWWWWWWWWU

pl

vl

q

q ¶ wIMU ¶ q≠1

m

T

XXXXXXXXXXXXV

ẋ =

S

WWWWWWWWWWWWU

vl

q ¶ aIMU ¶ q≠1 ≠ g

0.5 ú w ¶ q

0̨
T

g0úIsp

T

XXXXXXXXXXXXV

(3.1)

with aIMU and wIMU respectively the acceleration and angular rate measurement from the IMU

in body frame. All the states in x are in local-level frame, so the attitude quaternion q is used to

transform the IMU measurements from body frame to the local-level frame. Noting the quaternion

state q = (qw, qx, qy, qz) with qw the real part and (qx, qy, qz) the vector part of the quaternion,

we can transform any vector vb from the body frame to the local-level frame vl using [13]:

vl = q ¶ vb ¶ q≠1 (3.2)

We also have g =
5
0 0 g0

6T

the vector of gravity assumed to be constant and co-linear with

the ẑ axis of our local-level frame. Finally we have the specific impulse of the motor Isp which

is a parameter of the rocket engine that relates the mass variation with the thrust of the engine

T. This thrust is measured during the flight with a pressure sensor located inside the combustion

chamber.

To satisfy requirement 2021-LV-KF-FCT-02 (table 3.2), these equations needs to be solved to

estimate the full state every 10ms. Due to its simplicity of implementation, the Runge-Kutta

method of order four was chosen to solve equation 3.1 by numerical integration.

Altitude control 37

Kalman filter

The main issue with the simple INS model is that the position, velocity and attitude states will

inevitably drift over time, as biases inside the IMU will be integrated too. To get a better estim-

ation of the vertical position and velocity, Kalman filtering is used to fuse the barometric altitude

measurement and the INS estimation.

The basic principle of Kalman filtering is to use a model of a system to predict its evolution,

and measurements of the system to update our current estimation.

A simplified system is considered by extracting the sub-state xKF from the full state x provided

by the INS. This new system consists of only the vertical position and speed as they are the most

important states to estimate for this mission, and the only one we can reliably correct with only

the barometric measurement. The sub-state model is:

xKF =

S

WU
pz

vz

T

XV ẋKF =

S

WU
vz

0

T

XV = A ú xKF (3.3)

A =

S

WU
0 1

0 0

T

XV (3.4)

With ẋKF the time derivative of our sub-state mode. This continuous-time state-space repres-

entation can be discretized exactly using Euler’s method, as higher order terms are all equal to

zero.

Fk = eAú�t = I + A ú �t =

S

WU
1 �t

0 1

T

XV (3.5)

xKF (k + 1) = Fk ú xKF (k) (3.6)

Fk is the discrete-time state transition matrix, and �t the time interval between two samples k

and (k + 1). In our case, the prediction frequency is 100Hz by requirement, so �t = 10ms.

Now that we have a model of our system, we need to relate the barometric measurement hbaro

to our estimated state vector xKF using the observation matrix H:

Altitude control 38

hbaro = pz + rbaro = H ú xKF + rbaro (3.7)

H =
5
1 0

6
(3.8)

The barometric measurement hbaro directly measures the altitude above ground level, and we

assume that white noise rbaro ≥ N(0, ‡2
baro) is added to the true altitude. The variance ‡2

baro of the

barometer was directly measured on static conditions.

The state estimation also has uncertainty, modeled with a normal distribution, and estimated with

the covariance matrix P. This matrix is estimated recursively, using the the discrete-time state

transition matrix Fk:

Pk|k≠1 = Fk ú Pk≠1|k≠1 ú FT
k + Q (3.9)

This estimation is initialized with P0, representing the uncertainty on the initial state xKF 0. De-

rivation of P0 is detailed in section 3.2.1. The process noise Q was set to 0.002 ú P0 after some

tests with the simulator.

We now have a model of our system and of our measurement, and an estimation of their un-

certainties.

From these, the optimal [14] state estimation is obtained by first computing the Kalman gain:

Kk = Pk|k≠1 ú HT ú (H ú Pk|k≠1 ú HT + rbaro)≠1 (3.10)

and use it to combine the a-priori state prediction xKF k|k≠1 and the measurement hbaro to get the

a-posteriori state xKF k|k and covariance matrix Pk|k:

xKF k|k = xKF k|k≠1 + Kk ú (hbaro ≠ pz) (3.11)

Pk|k = (I ≠ Kk ú H) ú Pk|k≠1 (3.12)

Altitude control 39

3d acceleration

3d gyroscope

Thrust

quaternion

gyroscope
bias

+
-

gravity accelerometer
bias

3D speed

+
- -

3D position

Mass

Altitude

Integration

Sum

Transformation

Kalman
filteringBarometer

Figure 3.2: Complete navigation algorithm

Altitude control 40

Delay compensation

It was observed that the biggest source of errors in this model comes from delays in the inputs

and outputs of the GNC.

For this mission, the input delay is mostly important at lifto�, as it creates uncertainty on the initial

state. This initial error comes from the initial delay between the real lifto� time and the moment

the GNC receives high acceleration signal that triggers the start of the navigation algorithm. This

delay cannot be avoided, as starting the Navigation before lifto� would result in significant drift

due to the long integration time, as it will be shown in section 3.3.2.

Due to high total acceleration of 50 m/s2 to 62 m/s2 at lifto�, this results in the rocket having

already significant speed and altitude when the navigation starts, that we can approximate as:

Y
__]

__[

vz0 = a0 ú ·

pz0 = 1
2 ú a0 ú · 2

(3.13)

with a0 the initial acceleration and · the initial delay resulting in the initial error in speed and

position vz0 and pz0 .

To estimate this initial delay, we can first list all possible source of delays present at lifto�.

Delay type Description Value [ms]

Ignition delay
The time it takes for the engine combustion to create

the high acceleration defined as lifto� trigger
4

Mechanical

delay

The time it takes the acceleration created by the engine

to reach the accelerometer (speed of sound in carbon

fiber tube ¥ 10km/s [15])

0.1

Sensor delay
The times it takes the accelerometer to measure the high

acceleration due to the sampling period
Æ 48

Communication

delay

The delay to relay the IMU data from the AV to the

Raspberry Pi
3

GNC startup

delay

The time it takes for the di�erent GNC nodes to gener-

ate a first state estimation
10 to 20

Table 3.3: Sequence of delays from real lifto� to GNC startup

Altitude control 41

As we can see in table 3.3, the biggest source of delay is the sampling period of the sensors, so the

total delay can vary between 17.1ms and 75.1ms, and typical initial speed at Navigation startup

will be between 0.86m/s and 4.66m/s. Using equation 3.3, we can thus initialize vz0 and pz0 with

the mean delay and lifto� acceleration to have a reduced initial error and faster convergence of the

Kalman filter correction.

With this initial delay, we can also have an estimation of the initial state covariance P0. We model

this delay variation as a Gaussian process with a mean of 46.1ms and a variance of 93.5ms2 to

have a confidence interval of 99.7%. So · ≥ N(µ, ‡2) = N(46.1, 93.5). Using formula 3.13, we can

estimate the covariance matrix of the initial state to be P0 =

S

WU
0.00055 0.012

0.012 0.265

T

XV.

The output delay is the time interval between a GNC command and the execution of the real

actuator. In this case, this delay is mostly important at the shutdown time, as during this time

interval the rocket engine is still ignited, so the rocket will continue to accelerate which will result

in the rocket overshooting due to the excess speed. As for the input delay, we can list all sequence

of delays at shutdown.

Delay source Description Value [ms]

Navigation
Time delay to recompute a state estimation and apogee

prediction at 100Hz
Æ 10

Communication
The delay to relay the command from the Raspberry Pi

to the AV module
3

Motor control The delay to send low level control to the valve actuator Æ 50

Engine shut-

down

The time for the actuator to fully close the valve and

stop the combustion
100

Table 3.4: Sequence of delays from GNC command to engine shutdown

This mean output delay can then be used to have a better prediction of the real altitude and

vertical speed at the engine shutdown time. To do this, simple Euler integration of the current

acceleration measured by the IMU is used to shift these two states in time.

Altitude control 42

3.2.2 Guidance

To reach the required apogee, a Model Predictive Control (MPC) algorithm is developed to control

the thrust of the engine during its burn time. A faster, lower level algorithm, is also added to send

the engine shutdown command at the right time and reach the apogee on a ballistic trajectory.

The Guidance algorithm has to satisfy some requirements:

Table 3.5: Requirements for the Guidance algorithm

ID Name Description

2021-TVC-TP-

INT-01
Input

The Guidance shall use the state estimates

by the Navigation algorithm and the targeted

apogee as inputs

2021-TVC-TP-

INT-02
Output

The Guidance shall compute a thrust level in

the feasible range defined by propulsion

2021-TVC-TP-

PHYS-01
Frequency

The optimal thrust command and trajectory

shall be computed at least every 200ms

2021-TVC-TP-

PHYS-02
Communication

The Guidance shall transmit the commanded

thrust level in real time to the Propulsion’s

electronics via the CAN bus

MPC model

For this algorithm, a simplified model neglecting attitude dynamics is used.:

x =

S

WWWWWWWWU

pl

vl

m

T b

T

XXXXXXXXV

ẋ = f(x, u, –) = – ú

S

WWWWWWWWU

vl

cos(◊)úT búẑ≠d
mtot

≠ g0

T
g0úIsp

Ṫ

T

XXXXXXXXV

u =
5
Ṫ

6
(3.14)

The position pl and velocity vl states are in the local-level frame, noted with the superscript

l. The thrust command T b in body frame is added to the state vector, as its rate of change

will be controlled by the input u. Then the state dynamics are computed considering only the

dominant forces: rocket thrust, gravity and drag (by order of importance). As the thrust is in body

Altitude control 43

frame, the angle to the vertical ◊ is computed before each MPC iteration to project the e�ective

rocket thrust on the vertical axis. The 3D drag force is defined as d = C ú v2, with C the drag

constant encompassing aerodynamic coe�cient, frontal surface and air density: C = 0.5úflúS úCd,

computed for each axis of the rocket. This model of the drag force is quite a simplification, as it

should in theory take into account the external wind, and the e�ect of the angle of attack on the

drag constant C. However it proved to be su�cient for this problem, as these e�ects are mostly

important during the phases of low velocity and thus low drag.

The – coe�cient is used to scale the state dynamics, and is thus a parameter of the optimal control

problem, used by the solver to find the quickest trajectory from the current state up to apogee.

To find this parameter, we need to solve a minimum-time problem, whose general formulation is:

minimize
u(·),x(·)

⁄ tf

t0
1 · d· subject to: ’· œ [t0, tf] :

Y
_______________]

_______________[

ẋ(·) = f(x(·), u(·))

x(t0) = x0

x(tf) = xf

xmin Æ x(·) Æ xmax

umin Æ u(·) Æ umax

(3.15)

Which gives us the command u that will control our system starting from the initial state x0 to

arrive to the final state xf in the minimum time.

We can reformulate this problem using the scaling parameter –:

minimize
u(·),x(·),–

⁄ 1

0
– · d· = – subject to: ’· œ [0, 1] :

Y
_______________]

_______________[

ẋ(·) = f(x(·), u(·), –) = – ú f(x(·), u(·))

x(0) = x0

x(1) = xf

xmin Æ x(·) Æ xmax

umin Æ u(·) Æ umax

(3.16)

Which is completely equivalent to equation 3.15 and allow to use directly – as a parameter to

optimize in the minimum-time problem.

Altitude control 44

To solve this problem, the PolyMPC library [16] developed by the Automatic Control laborat-

ory of EPFL is used, taking care of the discretization, interpolation and numerical optimization of

the problem.

Firstly, the problem 3.16 is discretized using direct collocation method and Chebyshev polynomials:

x(t) =
Nÿ

k=0
xk„k(t) u(t) =

Nÿ

k=0
uk„k(t) (3.17)

Y
__]

__[

„k(t) = cos(k ú arccos(t))

tk = cos(fik
N)

(3.18)

which gives us a list of states xk and control vectors uk where the dynamics and constraints of 3.16

are enforced. To reach a good balance between accuracy and computation resources, two segments

with each five collocation points were used.

By extending this list of state and control variables with the parameter –, we can now solve this

problem using non-linear optimization problem theory. The method used in PolyMPC is the Se-

quential Programming Method [17] which solves the non-linear problem as a sequence of simpler

quadratic problems. The advantage of this method is that with only a few iteration, the solution

can be quite close to the optimal solution, so for real-time applications, a compromise can be

made between accuracy of the solution and computation time. Using the Eigen implementation

of PolyMPC we can solve this problem on the Raspberry Pi with a limit of ten SQP iterations,

and a maximum computation time of 180ms.

Once the problem is solved, only the first command uk(k = 0) is sent to the low-level thrust

controller of the rocket engine.

Because this thrust command corresponds to the minimum-time trajectory, it should minimize fuel

consumption. Indeed, for low altitude and low speed launches, the major loss is due to gravity drag,

which is the amount of time the rocket engine is used to fight against gravity. So at this scales, the

most e�cient trajectory with respect to fuel consumption is to use the maximum amount of thrust

for the shortest amount of time [18]. If in the future this algorithm would be used for high altitude

launches, a term could be added in the cost function to directly maximize the final mass of fuel in

order to take into account all types of loss, including drag loss that will play a more important role.

Altitude control 45

To make the OCP solution feasible, a few constraints on the state and control are added:

State Constraint Value

Propellant mass

m

Should be positive, and less than the initial loaded mass

of propellant
[0 ; m0] kg

Thrust level Tb

Cannot exceed a maximum value due to engine design,

and cannot be negative
[0 ; 3000] N

Altitude pz

Should be above ground level, and below targeted apo-

gee altitude to avoid overshoot
[0 ; pzf] m

Vertical speed
Should be positive (as we only consider the ascent phase)

and below supersonic speed
[0 ; 330] m/s

Thrust rate

Should always be negative to avoid re-ignition strategy

of the MPC during the flight, and with limited mag-

nitude

[-3000 ; 0] N/s

Table 3.6: List of constraints for the Guidance OCP

Apogee prediction

The MPC presented in the previous section should in theory be su�cient to fully control the thrust

of the engine during the flight. At one point the MPC should command zero thrust to the engine

in order to reach the target apogee without any overshoot, which would shutdown completely the

engine as we currently have no re-ignition capability during the flight. The rocket would then enter

the coast phase of the flight, during which only gravity and drag forces subsist and slow down the

rocket so that zero velocity is reached at the targeted apogee altitude.

The time when the rocket engine is shutdown is thus critical, so to add robustness, a lower level

algorithm is implemented to verify the apogee based on the current state. If the MPC sends a

shutdown commands to the engine (zero thrust) but the predicted apogee is lower than the target

one, this command is ignored. Otherwise, if the predicted apogee starts to be above the targeted

one, the MPC is bypassed, and a shutdown command is directly sent to the engine.

To predict the apogee, a simple analytical formula is used from [19]:

Altitude control 46

Y
___]

___[

hf = h0 +
ln(1+ v2

0úB

g0
)

2úB

B = 0.5úflúCdúS
mtot

(3.19)

with hf the predicted apogee, h0 the current altitude and v0 the current vertical speed. The para-

meter B summarizes the e�ect of drag on the rocket speed with the air density fl, the aerodynamic

drag coe�cient Cd, the frontal surface S and the rocket mass mtot.

This simple algorithm alone is enough to control the apogee altitude, so the main reason to have

the Guidance MPC is to have an algorithm that could easily be extended with other actuators

such as airbrakes for a better control. Additionally, the MPC generates a smoother thrust curve

compared to the abrupt shutdown of the apogee prediction algorithm, which reduces the problem

of output delay (see 3.2.1). For project Icarus, having this MPC gives us a way to qualify its

performance during a test flight, as this algorithm is very similar to the Guidance that will be

implemented on the complete TVC rocket.

Unfortunately, as the propulsion team of Bellalui could not develop in time the low level thrust

controller of their engine, Bellalui’s rocket currently has no throttling capabilities. Thus for the

next flight, the Guidance commands will only be logged for research purposes, and not be used to

control the engine.

3.3 Implementation and qualification

The Navigation and Guidance algorithms have been implemented following the architecture de-

scribed in chapter 1, with each algorithm running on a separate C++ ROS node and exchanging

data asynchronously. The following sections describe the implementation and test of these al-

gorithm in simulation and on the hardware.

3.3.1 Simulation

The first step in this development was to develop the GNC on the computer and test it on a

simulated environment. A separate package called "bellalui_gnc" was created, hosting mainly

Altitude control 47

Guidance and Navigation, as well as a small node called av_interface to interface the input/output

of the package with either the simulation or the real hardware.

GuidanceNavigation

AV_interface

Full state x

Thrust level u

Sensors
data

Sensors
data

Thrust
level u

ROS package

Figure 3.3: Simplified block diagram of the GNC ROS package used for Bellalui 2

The simulation was setup to send data every 48ms, mimicking the real avionics. To have a faster

state refresh rate, the Navigation numerically integrate the IMU data at 100Hz, and only perform

the correction step of the Kalman filter whenever new sensor data is available. The Guidance uses

this state to compute the optimal trajectory every 200ms and sends it to the interface node. To

reduce delay, this node is synchronized with input and output data using callback functions.

Altitude control 48

Figure 3.4: Altitude (left), Vertical speed (middle) and Thrust (right). The cross markers cor-
respond to the navigation estimation and the commanded thrust level, and the plain line are the
simulation data

The result of a typical simulation is presented on figure 3.4 for a targeted apogee of 3048m and a

final apogee of 3088m, which corresponds to a precision of 1.3%. We can see the precision of the

Navigation (cross markers) which matches well the simulation for the vertical position and velocity.

Here the thrust command (yellow line) of the Guidance is not used to control the flight, so the

rocket engine is at full throttle all the time (red curve). Nevertheless, we can see the Guidance

thrust level is always trying to be at full throttle to minimize fuel consumption at the beginning of

the burn, then steadily converges to zero thrust at the same time the apogee prediction algorithm

shutdown the engine, which we see on the red curve as the abrupt vertical line at 6.7s. Note that

here the Guidance thrust command is better than the full throttle, as a high thrust right before

engine shutdown will result in additional speed due to the rocket continuing to accelerate during

the delay between shutdown command and e�ective engine shutdown.

Monte Carlo simulation

To assess the performance of this GNC over all environmental conditions and flight profiles, a

setup to do batches of simulation was developed on the simulator. External perturbations and

internal sensors errors were varied randomly between each simulation to see their e�ect on the

flight performance. A summary of the varied parameters is presented on table 3.7.

Altitude control 49

Table 3.7: Monte Carlo parameters

Parameter Description Range

Rail zenith Initial angle from vertical [0 ; 10] °

Rail azimuth
Initial angle from North. Also defines wind

direction
[0 ; 180] °

Wind speed Speed of the constant wind [0 ; 15] m/s

Wind gust speed

(X and Y)

Speed of the wind gust added to unstabilize

the rocket
[0 ; 10] m/s

Accelerometer

noise

Standard deviation of the Gaussian noise ad-

ded to the true acceleration
[0 ; 0.2]m/s2

Gyroscope noise
Standard deviation of the Gaussian noise ad-

ded to the true angular rate
[0 ; 0.05] rad/s

Barometer noise
Standard deviation of the Gaussian noise ad-

ded to the true altitude
[0 ; 1] m

Sensor period Time period between each new sensor data [40 ; 56] ms

The current setup run each simulation in real time and sequentially, which takes 46s per simulation.

This allow to do around 1000 simulations to have a good dataset. The results of the last batch of

simulation are presented on figures 3.5a and 3.5b. The mean error is -15m and 95% of the flights

have a final apogee error between -90m and 59m. The worst flight had an error of -122m, which is

still a precision of 4% relative to the targeted 3048m.

One very useful result of such analysis is the Pearson coe�cient matrix shown in figure 3.5b which

allow to trace back the source of the apogee errors by showing its relation with the other simulation

parameters. High correlation is shown on the grayscale image as close to white.

Altitude control 50

(a) Histogram of altitude error at apogee, for

a target apogee of 3048m. Two sigma interval

is shown with plain red lines

(b) Pearson correlation between simulations parameters

and simulation results

The most interesting line to look at is the apogee error line, which shows a high correlation with

the vertical speed error at engine shutdown. This correlation can easily be explained as this velo-

city estimation is the main parameter used on the apogee prediction equation (3.19). Basically, if

the speed estimation error is too important, this equation will predict a too high apogee as this

additional speed will be integrated over the whole coast phase. This result in the engine being

shutdown too early. From equation 3.19 we find a relation of around 16m of apogee error per m/s

of vertical speed estimation error. This number corresponds roughly to the duration of the coast

phase, and was also confirmed statistically from the Monte Carlo dataset.

It is after this observation that the Navigation was extended to the full model presented in section

3.2.1 with the barometer correcting both altitude and vertical speed. The result of this modific-

ation is shown on figure 3.6, where we see that without the Kalman filter correction, the initial

speed error due to the initial delay is kept throughout the flight, whereas with the Kalman filter,

this error is corrected in around 1s. With the delay compensation, the error is corrected in 0.2s

due to the lower initial error.

This example is a good illustration on the e�ectiveness of the Monte Carlo simulation to high-

Altitude control 51

light small errors that can be hard to see on simple simulations, due to the large velocities and

accelerations.

Figure 3.6: Vertical velocity in [m/s] as a function of time in seconds. Without (left), with (middle)
kalman filter correction, and with delay compensation (right).

We can do the same analysis on the B parameter to find around 4.3m error at apogee for every

percent of error on this parameter estimation. This error mainly come from mismodeling of the

rocket parameter like its mass or aerodynamic coe�cient, and thus requires extra attention to be

corrected before each flight to adapt to the di�erent rocket models and configurations.

The last important result from this Monte Carlo simulation is the absence of correlation between

apogee error and external perturbations and configuration such as sensor noise or rail angle, which

suggest overall a good robustness of the GNC.

3.3.2 Hardware test

Once the GNC algorithms is validated with the simulation, it is necessary to test it thoroughly on

the real hardware. Thanks to the modular architecture used in this project, exactly the same ROS

package can be used on the on-board computer, which in our case is a Raspberry Pi 4. The only

di�erence is with the interface node which is configured to communicate directly to the avionic

instead of the computer simulation.

Altitude control 52

Processor-in-the-loop setup

To simulate a flight, the simulator is connected directly to the avionics’s GNC module. The

simulation sends sensor data to the GNC hardware module, and receives the GNC commands to

update the simulation.

Figure 3.7: Processor in the loop hardware setup

As we see in figure 3.7, the interfaces to perform this test are minimal, and are the same as those

used in-flight: CAN bus and power cables.

Using this setup, critical delay issues due the UART communication speed were addressed, and

the processing power of the Raspberry Pi could be verified to respect the 200ms period of MPC

computation. After these modifications, a final monte carlo simulation was done with the PIL

setup, which showed very similar performance as with the simulation.

Sensor validation

Because the simulator is not able to capture all imperfections of the real sensors used on the rocket,

it is important to test the Navigation with the real sensor data on the ground.

To do this, the complete AV module was used with the Navigation estimating the rocket state on

simple cases. First on a static and horizontal position, then by rotating the module in all axes

before replacing it back to the initial position, and finally by moving it to a known position. The

Altitude control 53

complete procedure can be found in Appendix A.

The result of a 30 seconds long static test is presented on figure 3.8.

Figure 3.8: State estimation during a static, horizontal test of 30s. The left column is the position,
middle column is velocity, and right column is the attitude (Euler angles)

We see that by estimating the gyroscope bias and removing them before integration allow to have

quite stable attitude estimation for the duration of a flight. Thanks to the barometer, the altitude

and vertical speed are also quite stable. The biggest error is on the horizontal velocity and position

estimation, which due to accelerometer errors drifts significantly during the flight, rendering them

currently unusable for future position control.

The result of the dynamic test also showed interesting result. Due to a low sampling frequency of

the gyroscope, the Navigation algorithm could not track properly the rotation of the AV module,

which resulted in a constant error at the end of the test (figure 3.9a). This was corrected by

increasing the sampling frequency to its current maximum of 20.8Hz, as seen in figure 3.9b.

Altitude control 54

(a) Euler angles estimation with 3Hz sampling fre-

quency

(b) Euler angles estimation with 20.8Hz

sampling frequency

Conclusion

The GNC for Bellalui 2 is now fully ready to be used in a real flight, thanks to the thorough

testing performed on the ground.

Unfortunately, due to the Coronavirus pandemic and bad weather, the test launch was postponed

to the end of July, so the result of this launch could not be presented in this report. However, the

current results presented in section 3.3 already show the benefits of using the tools and methods

developed during this thesis to catch bugs and errors without launching the rocket.

The current results also show the di�culty to obtain high apogee precision with the current set of

sensors and actuators. It is highly advised to the EPFL rocket team to add new sensors such as

magnetometer or GNSS to improve the current state estimation. Developing the low level thrust

throttling or adding airbrakes would also give more control to the GNC. These modifications would

greatly increase the robustness and precision of the GNC for altitude control, and will be probably

mandatory for the future Thrust Vector Control of the rocket.

Altitude control 55

Chapter 4

Trust Vectoring Control

This chapter describes the first steps in the development of a Thrust Vector Control (TVC) system

for the EPFL Rocket Team. This project being quite large and complex, it will require the work of

students over the span of several semesters. The achievement of this semester team are thus mainly

on first designs and proof-of-concepts that should serve as a basis for the following semesters.

4.1 Motivation

Thrust Vector Control (TVC) is a method to control the direction of a rocket engine thrust to

control the attitude of the rocket. In turns, this defines the rocket direction of flight which is

used to control its position and velocity. Compared to the GNC developed in chapter 3, a TVC

system allows the complete control of the state, and is thus widely used in today commercial rocket

launchers [20].

Developing a TVC system and its associated GNC is thus a very interesting project for the EPFL

Rocket Team in its objective of developing state of the art technologies in the field of rocket launch-

ers. It is also the logical next step that will allow more ambitious missions such as sub-orbitals

flights which cannot rely on passive aerodynamic stabilization due to the low air density at high

altitude. For a similar reason, Thrust Vectoring is also a key-technology for enabling control during

low-speed phases of the missions, such as for vertical take-o� without launch rail [21] or for precise

controlled landing [22].

Besides these long term objectives, the current mission profiles at low altitude and speed could

already benefits from having more control over the vehicle during its thrusting phase.

The first benefits would be a better control of the rocket attitude, as the current passive stabiliza-

56

tion is highly dependent on the external wind perturbations (see [3] on chapter 3) which is di�cult

to predict or measure. As shown in figure 4.1, this perturbation results in the rocket having usually

an angle of 5° to 10° with respect to the vertical during the thrust phase which leads to unwanted

horizontal accelerations.

Figure 4.1: Estimated angle with respect to the vertical (blue) and ẑb acceleration (orange) as a
function of time. These data comes from the launch of the rocket Bellalui 1 in 2020

To compensate this e�ect, the rocket is usually accelerated vertically at high speed on a launch rail,

so that the wind speed becomes significantly lower than the rocket speed. However, this results in

additional ine�ciencies due to the launch rail friction with the rocket launch lug, which are small

plastic parts attached to the rocket and sliding inside the launch rail. Thus, the second advantage

of the TVC would be to reduce the drag and friction due to the launch rail and launch lugs. The

fins size and its associated drag could also be reduced by up to 30% [23], as the stabilization during

the critical lifto� phase would be ensured by the TVC system. Overall these two points would

improve the e�ciency of the rocket, by increasing the thrust e�ectiveness, and reduce the drag

e�ect.

Another possible benefits of the TVC is on the control of the horizontal position and velocity of the

Trust Vectoring Control 57

rocket. Because of the vertical angle during the thrust phase, the rocket accelerates horizontally,

and thus drifts significantly away from the launch pad. Because of the uncertainty on wind speed

and direction, the guidelines for a safe rocket launch requires a secured launch zone diameter of at

least half of the altitude apogee [24], which proved to be very di�cult to find in Switzerland. With

the help of the TVC system, this vertical angle could be minimized, and the horizontal position

drift could be compensated by controlling the flight direction of the rocket with the TVC.

Trust Vectoring Control 58

4.2 Guidance and Control of a TVC system

This section first explains the general theory of controlling the attitude, position and velocity

states of a rocket using Thrust Vector Control. Then a first implementation of a guidance and

control algorithm using Model Predictive Control will be used to demonstrate the capability of a

TVC system to achieve the objectives presented in the previous section.

4.2.1 Control strategy

Because the controlled force of a TVC system is applied at the bottom of a rocket, far away from

the center of mass which is usually located near the middle of the rocket, the e�ect of the TVC

is mainly to create torques around the x̂b and ŷb axes of the rocket to control its attitude, rather

than directly using the 3D force vector to control the speed and position of the rocket.

The usual strategy [25] to control the position and velocity of a rocket is shown in figure 4.2.

Target
position and

velocity
Trajectory planning Target

attitude Attitude controller Target
torque TVC controller

TVC system

actuator
position

Rocket
Force
and

torque

- Angular rate
- Attitude

- Velocity
- Position

Figure 4.2: Black diagram of the sequence of control used for a typical rocket GNC

To reach the target position and velocity, the rocket is rotated in the direction of the flight by the

attitude controller. If we neglect aerodynamic e�ects, the rocket can be stabilized in any orienta-

tion as long the vector of force fb
c passes through the center of mass of the rocket.

Indeed, if we write down the sum of torque on the rocket, we have:

ÿ
· l = 0̨ ◊ gl + Rb ú (dCM ◊ fb

c) = 0̨ (4.1)

Trust Vectoring Control 59

The vector gl is the force of gravity applied at the center of mass, and thus producing no torque

on the rocket. Rb is the rotation matrix derived from the attitude of the rocket, and dCM is the

vector from the nozzle of the rocket engine (where the thrust force is applied) to the center of mass

of the rocket. So to reach equilibrium, we only need:

dCM ◊ fb
c = 0̨ ∆

S

WWWWWU

dx

dy

dz

T

XXXXXV
◊

S

WWWWWU

fcx

fcy

fcz

T

XXXXXV
=

S

WWWWWU

dyfcz ≠ dzfcy

dzfcx ≠ dxfcz

dxfcy ≠ dyfcx

T

XXXXXV
= 0̨ (4.2)

However, the rockets developed by the EPFL Rocket Team have only one rocket engine, which is

aligned with the center of the rocket. The center of mass is also placed by design at the center of

the rocket, so dx = dy = 0, and:

· b
c = dCM ◊ fb

c =

S

WWWWWU

≠dzfcy

dzfcx

0

T

XXXXXV
= 0̨ ∆ fcx = fcy = 0 (4.3)

To compensate external perturbation torques such as those due to aerodynamic forces, or if we

need to rotate the rocket (q
· l ”= 0̨) to a new attitude, we can use the TVC system to generate

lateral body forces fcx and fcy, so that the vector of thrust force is not passing through the center

of mass.

Once the rocket is stabilized to a new attitude, the projection of the thrust force to the local-level

frame is used to control the position and velocity of the rocket, similarly to how a quadcopter

control its position.

This strategy is usually implemented as a cascade of controllers, as shown in figure 4.2. In the next

section, we will explore the possibility to use MPC to find this strategy directly from the model

of the system, without having to detail it explicitly in the controller. This could allow a better

balance between the objective of stabilizing the attitude and angular velocity, with the objectives

of position and velocity tracking.

Trust Vectoring Control 60

4.2.2 Guidance, Navigation and Control

Control formulation

A Model Predictive Controller is implemented to control the rocket with the TVC model presented

in section 4.2. This controller has no model of the actuators, and is thus working only with high

level forces and torques commands in body frame:

u =

S

WWWWWWWWU

fcx

fcy

fcz

·z

T

XXXXXXXXV

=

S

WWWWWWWWU

u[0]

u[1]

u[2]

u[3]

T

XXXXXXXXV

(4.4)

The attitude of the rocket can be completely controlled with the torque vector · b
c derived from

the input u:

· b
c =

S

WWWWWU

≠dzfcy

dzfcx

·z

T

XXXXXV
=

S

WWWWWU

≠dzu[1]

dzu[0]

u[3]

T

XXXXXV
(4.5)

And the controlled fb
c force acting on the rocket is:

fb
c =

S

WWWWWU

fcx

fcy

fcz

T

XXXXXV
=

S

WWWWWU

u[0]

u[1]

u[2]

T

XXXXXV
(4.6)

These controlled forces and torque are used to control the state vector x, defined as:

x =
5
pl vl q wl mp

6T

(4.7)

with pl and vl respectively the 3D position and velocity of the rocket in local level-frame, q =
5
qw qx qy qz

6
the quaternion representing the attitude of the rocket, wl its angular rate in

local-level frame, and mp is the mass of propellant.

The dynamic of this state vector is computed using the ordinary di�erential equation of a rigid

Trust Vectoring Control 61

body in 3D space, with varying mass. First, the sum of the forces and torques acting on the rocket

are computed. An approximation of the equations presented in section 2.1.1 is used to reduce

computations, so only the thrust of the rocket, its weight, and the drag force are considered.

First the weight force is computed using a constant gravitational acceleration of g0 = 9.81m/s2 :

w(mp)l = ≠mtot ú g0 ú ẑl = ≠(mdry + mp) ú g0 ú ẑl (4.8)

The thrust of the rocket is simply the transformation of the body frame controlled force fb
c to the

local level-frame, using the quaternion state q:

fl
c = q ¶ fb

c ¶ q≠1 (4.9)

Finally, the drag force is approximated as colinear with the rocket ẑb axis, and thus produces no

torque:

dl = q ¶

S

WWWWWU

0

0

0.5 ú Cd ú fl ú S ú v2
z

T

XXXXXV
¶ q≠1 (4.10)

with Cd the drag coe�cient of the rocket, fl the air density and S the frontal surface of the rocket

which are constant parameters. The advantage of this simple drag model is that does not require

angle of attack estimation, as the EPFL Rocket team as no means to measure it. For the same

reason, the lift force is neglected. Thus these approximation only holds for small variation of the

rocket’s attitude, so that the angle of attack is kept relatively small during the flight.

The sum of forces f l
tot and torques · l

tot can then be computed as:

Y
__]

__[

fl
tot = w(mp)l + fl

c + dl

· l
tot = q ¶ · b

c ¶ q≠1
(4.11)

and used to find ẋ the time derivative of the state x:

Trust Vectoring Control 62

ẋ = f(x, u) =

S

WWWWWWWWWWWWU

vl

fl
tot

mp+mdry

0.5 ú wl ¶ q

q ¶ (· b
c ú Ib≠1) ¶ q≠1

Îfl
cÎ

g0úIsp

T

XXXXXXXXXXXXV

(4.12)

with mdry the mass of the rocket without propellant, and Isp the specific impulse of the rocket

engine which relates the total thrust Îfl
cÎ to the propellant mass variation Îfl

cÎ = ṁp ú (g0 ú Isp).

The matrix of inertia Ib is used to compute the angular acceleration first in body frame, then is

transformed to the local-level frame.

Using this system, we formulate the following MPC problem:

minimize
u(·),x(·)

⁄ tf

0
[xe(·)T Qxe(·) + ue(·)T Rue(·) + (cos(◊) ≠ 1)2 ú q◊] · d· + xe(tf)T Qfxe(tf)

subject to: ’· œ [0, tf] :

Y
____________________]

____________________[

ẋ(·) = f(x(·), u(·)), x(0) = x0

xe(·) = x(·) ≠ xt

ue(·) = u(·) ≠ ut

cos(◊) = q2
w ≠ q2

x ≠ q2
y + q2

z

xmin Æ x(·) Æ xmax

umin Æ u(·) Æ umax

(4.13)

which minimizes with a quadratic cost function the distance of the state x to the target state xt,

and the input u to the target input ut defined by the guidance algorithm:

xt =

S

WWWWWWWWWWWWU

pl
t

vl
t

qt

0̨

mpt

T

XXXXXXXXXXXXV

ut =

S

WWWWWWWWU

0

0

ftz

0

T

XXXXXXXXV

(4.14)

Trust Vectoring Control 63

The guidance algorithm is the same formulation and implementation as the one described in sec-

tion 3.2.2. It computes the optimal trajectory from the current state to the apogee, which is used

to define the target position pl
t, velocity vl

t and propellant mass mpt that the control algorithm

should reach within it horizon time tf . As the guidance does not consider rotations in its model,

the control algorithm simply minimizes the weighted norm of the angular rate and distance to the

vertical orientation defined by qt =
5
1 0 0 0

6
. In practice, the target quaternion qt is not dir-

ectly used in the cost function, but rather the angle ◊ between the ẑb and the ẑl axes is minimized

by computing the cosine of this angle from the quaternion state.

To help the control algorithm, the optimal thrust ftz computed by the guidance is also provided.

The other inputs are targeted to zero to help stabilize the system and reduce propellant consump-

tion.

Implementation and Results

The Model Predictive Controller is implemented using the PolyMPC library in the same manner

as it was described in section 3.2.2. Using the Eigen implementation for maximum performances,

the problem is solved with a limit of one SQP iteration so that the computation time is kept under

50ms when solved on a laptop in a simulation environment. This problem is then solved every

50ms, and as suggested by Raphaël Linsen during his semester project [26], this computation time

is compensated by propagating in time the current state of the rocket by 50ms before solving the

problem.

Another implementation detail which helps to solve the MPC problem faster is to scale the input

and state vector so that their numerical values have similar orders of magnitude [27]. The input

vector is thus scaled to have its values between -1 and 1, with -1 corresponding to the minimum

force or torque, and +1 corresponding to the maximum. The state vector has only its position

and velocity vector scaled to be in units of kilometers rather than meters, so they have magnitude

of 10≠2 to 100, similarly to the other states.

To test the GNC, a new package called generic_gnc was developed and connected to the sim-

ulator developed in chapter 2. The Guidance and Navigation algorithm are the same as those used

in chapter 3.

First the attitude stabilization was tested for low altitude and speed types of flight, and without the

Trust Vectoring Control 64

guidance algorithm. Only the weight q◊ and the matrix R have non-zero value in equation 4.13. The

matrices Q and Qf are both null matrices so that the control algorithm only tries to keep the rocket

vertical.

Figure 4.3: Euler angle (top), angular rate
(middle) and controlled lateral forces (bot-
tom)

The result of this test are shown in figure 4.3. We

see that the control algorithm compensates the ini-

tial angle of the rocket in around 3 seconds by using

a force fcx to create a torque around the ŷb axis.

A residual angle of around 1.5° is present, probably

due to an equilibrium between the weight on the in-

put R and on the objective of minimizing the vertical

angle ◊ with the weight q◊.

R =

S

WWWWWWWWU

0.5 0 0 0

0 0.5 0 0

0 0 0 0

0 0 0 0.5

T

XXXXXXXXV

q◊ = 104

The weight on the inputs was necessary to avoid os-

cillations of the inputs and the rocket.

This simulation uses a rocket with fins sized to have

the center of pressure very close to the center of

mass, and with no external wind, so that there is

very little perturbations due to the lift force.

Thus, the next the same simulation is run with nor-

mal sized fins to have passive stabilization, and an

external wind of 5m/s. The result is shown in figure

4.4, where we see a similar behaviour, with the ini-

tial angle being corrected in around 3 seconds, but

this time the increasing speed of the rocket creates a new equilibrium point for the vertical angle,

Trust Vectoring Control 65

which thus rises over time.

Figure 4.4: Euler angles (left) and controlled lateral forces (right) with a wind of 5 m/s

Better results could be obtained by modelling the lift force, or by adding an estimation of the

unknown perturbations to directly compensate them, instead of compensating the resulting error.

This was confirmed by the flight tests done with the drone, which estimates the unknown force

and torque perturbation to achieve more accurate tracking [26].

The last unit test is on the position and velocity control. Because of the initial angle of 10°,

the rocket accelerate along the x̂l axis and thus drifts away from the launch pad. The controller

also has a constant target of 2 meters in ŷl, so it has to simultaneously stabilize the rocket vertic-

ally, while tracking a 2D horizontal position.

For this test, the weight matrices Q and Qf are added to balance between tracking the error in

attitude and the error in position.

Q14ú14 = Qf 14ú14 =

S

WWWWWWWWWWWWWWWU

50 0 0 0 0

0 50 0 0 0 ...

0 0 0 0 0 0

0 0 0 0.5 0 ...

0 0 0 0 0.5

... 0 ... 0

T

XXXXXXXXXXXXXXXV

ú 103

Trust Vectoring Control 66

As seen in figure 4.5a, the controller is able to reach the target position and stabilize around

it at low velocity. While maneuvering, it is also able to keep the rocket’s attitude close to the

vertical, as we see in figure 4.5b. Small errors in position tracking seems to be due to the drift of

the state estimation from the Navigation algorithm.

(a) Horizontal position (top) and velocity (bot-

tom)

(b) Euler angles (top) and angular velocity

(bottom)

Figure 4.5: Simultaneous tracking of the position and attitude of the rocket, with a wind of 5m/s

The last test is a simulation of a typical flight that could be done in Switzerland, targeting an

altitude of 2000 meters, and using our latest iteration of a large scale rocket called Bellalui-2 (see

table 3.1).

For reference, a first simulation is done without TVC. A 9 meters launch rail is used to accelerate

Trust Vectoring Control 67

the rocket at lifto�, and four fins of 17 centimeters span are placed at the bottom of the rocket to

stabilize it passively. Thus this configuration corresponds to a typical rocket launch that we can

do with our current technology.

The engine thrust is kept at its maximum during the whole flight (no throttling), and the low-level

altitude control algorithm presented in section 3.2.2 is used to stop the engine at the right time to

reach the targeted altitude of 2000 meters. The results of this flight are shown in figure 4.6.

Figure 4.6: Reference flight without TVC, with a constant wind speed of 5m/s

The motor is shutdown 5 seconds after lifto�, and the rocket reaches an apogee of 2020 meters, 22

seconds after lifto�.

The rocket is launched vertically, but because of the wind, it stabilizes with the fins at around

10° during most of the flight. As usual, the rocket goes horizontal at apogee due to the constant

horizontal wind speed.

Another result of this simulation is the horizontal position drift of 370 meters away from the

launchpad at apogee, and the final horizontal speed of 18 m/s.

Next the same simulation is run with the TVC activated. The launch-rail is not used, and the fin

size is reduced to 10 centimeters of span so that there is almost no passive stabilization due to the

lift force. Thus the controller has full control on the rocket trajectory during the thrust phase.

Trust Vectoring Control 68

Similarly to the previous test, the thrust phase last 5.1 seconds, and an apogee of 2020 meters is

reached after 22 seconds of flight. The result is shown in figure 4.7.

Figure 4.7: Reference flight with TVC activated, with a constant wind speed of 5m/s

The most notable di�erence is the low Euler angles of less than 2° during the 5.1 seconds of TVC

control. When the TVC is deactivated at the rocket engine shutdown, the rocket is at its maximum

speed, so the very low passive stabilization is enough to keep the rocket close to the vertical.

The second important result is the small horizontal velocity and position. At apogee, the rocket

has only drifted by 7.5 meters away from the launchpad, compared to the 370 meters drift without

TVC. The norm of the horizontal velocity is only 0.8 m/s, which highly reduces the stress on

the parachute system deployed at apogee, compared to the usual 18m/s observed on the previous

simulation without TVC.

A summary of these two flight is presented in table 4.1.

Trust Vectoring Control 69

Parameter Without TVC With TVC

Burn time [s] 5 5.1

Max speed [m/s] 185 185

Apogee error [%] 1 1

Mean vertical angle during thrust [°] 6.4 1.0

Mean vertical angle during ascent [°] 23.8 3.9

Horizontal position drift at apogee [m] 370 7.5

Horizontal speed at apogee [m/s] 18 0.8

Table 4.1: Simulation comparison for a typical high-power flight, with and without TVC

4.2.3 Conclusion

In this section, the general theory to control the complete state of a rocket using Thrust Vector

Control was presented. Then a Model Predictive Controller was developed and integrated with a

navigation and a guidance algorithm to be tested in a Software-In-the-Loop configuration.

The results show the e�ectiveness of the TVC to control the complete position, velocity and atti-

tude of the rocket, which could allow more e�cient trajectory tracking, reduced launch area due to

a lower position drift, and safer parachute deployment due to the lower horizontal speed at apogee.

These results are thus a first step in developing a Thrust Vector Control system for the rock-

ets of the EPFL Rocket Team, which would give more control on the launch trajectory, and give

the possibility to start more complex mission such as high altitude launch or propulsive landing.

Trust Vectoring Control 70

4.3 Flight model development

4.3.1 Technology trade-o�

The model presented in the previous section is a generic model which does not consider any real

implementation of the TVC system. This allow it to be adaptable to various TVC system and

vehicles.

However, the long term objective of the team is to implement a real TVC system on a large-scale

rocket. This type of rockets are typically three to four meters long, and weight between 35 and 45

kg at lifto� (see section 3.1.2).

First, a technology trade-o� was done to chose the most suited technology for our rockets. The

alternatives that were considered are:

• Gimbal engine: The whole rocket engine is mounted on a two-degree-of-freedom (2 DOF)

mechanism to allow two rotations of the rocket engine thrust. This system can only generate

pitch and yaw torque with one engine.

• Jet vanes: Three of four independent aerodynamic surfaces are placed at the exit of the

rocket engine to redirect partially its plume, and thus its thrust. This system can generate

roll torque (ẑb axis) by swirling the exhaust plume.

• Liquid injection: A set of valves controls the injection of a pressurized liquid near the exit

of the gas to disturb its flow and control its direction.

• Gimbal nozzle: Similar to the gimbal engine, but only the nozzle part of the rocket engine

is rotated, which makes the mechanism more compact and modular.

Out of these four options, two were quickly discarded for the large-scale rocket. First the gimbal

engine, though state-of-the-art technology for commercial launchers due to its e�ciency, cannot

be used in our rockets, as our long rocket engine does not have enough room to be rotated inside

our slim rockets. The liquid injection technology was discarded due to its complexity in the mod-

elisation and implementation of the system.

Trust Vectoring Control 71

To decide on the remaining two technologies, a complete trade-o� was made, including definition

and ranking of trade-o� criteria. The final result is shown in figure 4.8. The complete trade-o�

process can be found in appendix B.

Figure 4.8: Ranking of the criteria

The Jet-vane solution clearly stand out in this trade-o� study. Despite its lower e�ciency due to

the added mass and drag on the vanes, it has the advantage of being highly modular as it can be

developed as a separate module to be placed at the exit of the rocket engine. This means that

an already existing large-scale rocket, such as Bellalui-2 or Bellalui-1 can be directly used and

augmented with the TVC module, even though these rockets were never designed to integrate a

TVC system in the first place. Another important advantage of the jet vanes is that they allow

for roll control of the rocket.

On the other hand, the gimbal nozzle solution was deemed more di�cult to develop, due to the

complexity of the sealed rotating joint that would have to withstand the extreme temperature

and pressure of the combustion chamber. This technology also requires heavy modification of the

Trust Vectoring Control 72

rocket engine to replace its current static nozzle, which would increase the risks to damage the

engine.

Thus, it was decided that the long-term objective of project Icarus would be to develop a Jet

Vane Thrust Vector Control (JV-TVC) system as a separate project to be integrated in the rocket

Bellalui-2.

However, due to the complexity of this project, it was also decided to develop small-scale flight

models that would use gimbal engine TVC. Indeed this technology is simpler, more e�cient, and

could easily be integrated in first flight model prototypes. The rest of this section thus describes

the development of a small drone that integrates a type of gimbaled engine TVC for early flight

demonstration. Then the first results of the jet vane TVC system developed by the team are

presented.

4.3.2 Drone model

It is common when developing GNC algorithms for a spacecraft or a launcher to start with a

small scale version of the final product. This simplified model serves as a test platform to deploy

and test first flight software with reduced cost and risks. One example of this is the "grasshopper"

prototype from the aerospace company SpaceX, or more recently the "FROG" prototype developed

by the Centre National d’Etudes Spatiales (CNES) which will serve as a first step in the project

of developing a reusable launch vehicle for the family of Ariane rockets [28].

To support the long-term development of a TVC system for our rockets, a small and cheap Un-

manned Aerial Vehicle (UAV) called "the drone" was designed, built, and used for first in-door

flights experiments, using similar GNC architecture and development plan as what was presented

in the previous chapters.

The drone was designed to mimic the dynamics of a rocket, with the center of mass placed above

the controlled thrust. The TVC consists of two contra-rotating propellers placed on a 2 DOF

gimbal.

The system identification, controller design, and tests flights were conducted by Raphaël Lin-

sen during his semester project [26]. My work on this project was on the high-level design, the

manufacture of the drone, and the support during the drone tests (see appendix C).

Trust Vectoring Control 73

Mechanical design

The drone consists of three main parts: the TVC stage, electronic stage and battery stage. These

are placed vertically on a tower-like structure, with the TVC stage at the bottom providing the

controlled thrust with four actuators, the electronics stage in the middle hosts the power electron-

ics and microcontroller, and finally at the top is the battery stage, which o�set the center of mass

away from the TVC stage.

(a) Drone initial concept (b) Manufactured drone

The three stages are made out of lightweight plywood and connected together with four M4

threaded steel rods, so that the di�erent stages could easily be moved or replaced for this first

version. As shown in figure 4.9b, transverse aluminium rod and an empty plywood stage were

added between the TVC and the electronic stage to add rigidity to the structure.

All the Computer-Aided Design (CAD) parts were modeled by Théotime Lemoine, a member of

the EPFL Rocket Team.

Trust Vectoring Control 74

Electronic design

The electronics is composed of a commercial drone board from ST Electronics which provides IMU,

barometer and magnetometer sensor data. This board is connected via UART to a Raspberry Pi

4 which runs the GNC using ROS (see chapter 1). The Raspberry Pi also controls the four

actuators using 50Hz Pulse-Width-Modulation: two brushless motors are used to provide thrust

and roll control using two contra-rotating propellers, and two servo-motors are used to gimbal the

brushless motors along two axes. One large battery is used to directly power the brushless motors

through their Electronic Speed Controllers (ESC), while a smaller battery is used to power the

two electronics boards and the servomotors.

Conclusion

A summary of the drone specification is shown in table 4.2. Overall this first version was very

successful as a cheap and rapid to develop test platform. Thanks to the work of Raphaël on the

GNC, it demonstrated first in-door controlled flight using the proposed GNC architecture and

simulator developed during this thesis.

Specification Unit Value
Dimensions mm 530*190*250
Mass kg 156.8
Dry Mass kg 1.53
Center of mass height mm 205
Thrust range N 4.9 to 19.6
Flight time s 133 (2min 13s)

Table 4.2: Drone V1 specifications

A second version of this drone is being designed by Théotime Lemoine to be lighter and more

precise in its physical characteristics. This new version will also integrate the rocket’s avionics to

support more realistic outdoor flight. The results of this work could also serve as a basis to develop

a first small-scale rocket with gimbal TVC, which would be an intermediate flight prototype before

the large scale rocket TVC.

Trust Vectoring Control 75

4.3.3 Jet vane model

In this section are described some of the first results obtained by the Icarus team on the devel-

opment of a jet-vane TVC (JV-TVC) system for the rocket Bellalui-2. This is a complex project

involving mechanical and electronics design, fluid simulations, and extensive ground testing and

characterization which necessitated the work of five technical semester projects. Supervision of the

team was part of the work done for the thesis.

Mechanical design

The JV mechanism is designed to be a separate module containing the four independent vanes

and their actuators. An image of the mechanism developed by Copenhagen Suborbitals for their

rocket Sapphire is shown in figure 4.10. A very similar design is being developed at the moment,

with the vane axis supported on a bearing, and actuated by a dedicated servo-motor.

Figure 4.10: Jet vane mechanism from Copenhagen Suborbitals

For safety reason, the jet vane should return to its resting position in case of power failure, so that

the rocket thrust is brought back to being colinear with the rocket ẑb axis. To do this, the center

of pressure of each vane is placed behind their axis of rotation, so that the lift force create a torque

stabilizing the vane around zero angle of attack.

Trust Vectoring Control 76

The four vanes are attached to an aluminium plate that can be bolted to the rocket bottom plate,

which makes the mechanism simple to assemble and highly modular.

Electronic design

The work on the electronic has been done by Iacopo Sprenger [1]. Besides the development of the

electronic interface presented in section 1.2.1, he is working on the low-level electronics controlling

the sensors and actuators of the Propulsion sub-system, including the four servo-motors to control

the four jet vanes orientations.

Figure 4.11: Dynamixel XL-330 servo-
motor

We chose the servo-motor model XL-330-M288-T from

Dynamixel due to its small size, powerful features, and

ease of integration. The specifications of this servo-motor

are presented in the following table:

Specification Unit Value
Dimensions mm 20*34*26
Mass g 18
Stall torque N.m 0.52
No load speed rpm 104
Resolution ° 0.09
Supply voltage V 3.7 to 6
Communication
protocol - Half duplex serial (TTL)

The Transistor-to-Transistor Logic (TTL) serial commu-

nication protocol makes it very easy to control as the

servo-motor can be directly connected to the propulsion

microcontroller board. Thus, except for the wiring and

connectors, no special hardware had to be developed to integrates these motors. The current

Bellalui-2 rocket electronics can be re-used as is, with the GNC algorithms deployed into the up-

per electronics stage (avionics), and sending high level commands to the lower electronics stage

(propulsion). These servo-motors can receive commands in position or speed, have configurable

step response, and sends back their current position and current consumption, which could be used

for torque estimation of the jet vanes. The last important feature is the ability to daisy-chain the

four servomotors, which simplify their integration in the rocket by minimizing wiring.

Trust Vectoring Control 77

Jet vane model

Compared to a gimbal TVC where the thrust of the engine is directly redirected by the gimbal,

a JV-TVC has a more complex model, depending on aerodynamic e�ects between the supersonic

exhaust gas and the jet vane.

Thus, the first step to develop a model is to use Computational Fluid Dynamics (CFD) to simulate

the rocket engine and its interaction with the jet vanes.

This was the semester project of Théo La Marca [29] who setup the CFD simulation using Fluent

and used it to find a relation between aerodynamic forces and angle of attacks of the vanes, as

seen in figure 4.12.

Figure 4.12: Lift force of one vane, for various angle of attack and combustion chamber pressure

The lift force is perpendicular to the flow, so it is directly a force in either the x̂b or ŷb axis. We

see that the lift force is dependent on the combustion chamber pressure, which defines the thrust

of the rocket engine. Depending on the main thrust, we thus have between 50 and 96 Newtons of

lateral force because each axis has two vanes to control it. For reference, the simulations presented

in 4.2.2 have a limit of 50 Newton of lateral force.

Trust Vectoring Control 78

The same type of fluid simulations were done to find the drag force of the jet vanes, which creates

a force in the ≠ẑb axis of the rocket, opposite to the thrust force. All these simulations gives us a

first model of the JV-TVC for equation 4.4.

The next step to have a more reliable model would be to directly measure these forces during

a static fire test of the engine, with the JV-TVC mechanism mounted on our test bench.

For this, Arnaud Muller developed [30] a platform to measure 3D forces and torques with an as-

sembly of cheap 1D load cells, as seen in figure 4.13.

Figure 4.13: CAD model of the 6 DOF measuring platform

Besides allowing system identification for the TVC system that will be developed, this measuring

platform could also be used for complete Hardware-In-the-Loop by providing force feedback to the

simulation, as presented in chapter 2.

Thermal analysis

The last development of this project was to study di�erent materials and shapes for the jet vanes.

Indeed, the exhaust gas is estimated to have temperature between 2500 and 3000 Kelvin, with flow

velocity around Mach 2.5. This very harsh environment can destroy the vane in a few seconds if

not taken into consideration.

A project [31] conducted by Usama Qayyum was dedicated to simulate the thermal behaviour of

di�erent materials. At the same time, simple experiments were conducted to place jet vanes in a

static fire test of the engine to directly measure the impact of the rocket engine on them.

Trust Vectoring Control 79

Figure 4.14: Thermal test on a steel vane during a static fire test of our hybrid rocket engine

This way, steel, graphite and copper vanes were tested, and compared with the result of the simu-

lation. Steel vanes were quickly discarded as they melt in less than 3 seconds, graphite withstand

very well the temperature but showed signs of erosion which could impact its aerodynamic prop-

erties during the flight, and finally copper vane survived for a short static fire test, and would thus

need to be tested again on a more realistic static fire test of 5 to 10 seconds.

Summary

This section briefly presented the first developments of the Jet-Vane TVC system that could be

integrated in Bellalui-2 in the future. All the aspects of this system have been studied in this first

project, including the mechanism, electronics, simulations and test bench, but all will need much

further development to be ready for ground tests and qualification.

The results of this future test campaign will be critical to determine if this system is safe and

ready for a first controlled flight of a large-scale rocket.

Trust Vectoring Control 80

Conclusion

In this chapter, the Thrust Vector Control technology was presented and its importance for a

rocket launcher was demonstrated by developing a simple Software-in-the-Loop setup. The di�er-

ent objectives of attitude, position and velocity control were met in the simulation environment,

and confirmed its potential for the EPFL Rocket Team as a promising technology for better tra-

jectory control and to allow more complex missions in the future.

The first results of two flight models were also presented. One is a drone which demonstrated

the capability of the EPFL Rocket Team to develop complete Guidance, Navigation and Control

for a Thrust Vectored Controlled UAV, and the other is a Jet-Vane TVC system for our rocket

Bellalui-2 which could be the first large scale rocket to be actively controlled with a TVC system

developed by a team of students.

It is clear that both of these projects will need more development in order to reach the ambi-

tious goals set by the team. The drone project should continue on its iterative improvement, by

gradually adding more complexity and features of a real rocket launcher, like embedded sensors for

outdoor flights or more realistic flight profiles. On the other hands, the JV-TVC project should

focus on finishing the current development of its mechanism, electronics and vane material and

shape optimization, in order to raise its technology maturity, and allow real hardware tests and

characterization.

Trust Vectoring Control 81

Conclusions

This thesis presents a new framework to develop advanced GNC for the EPFL Rocket Team. It

includes a complete definition of the software and hardware architecture, as well as reliable tools

for simulation and analysis that accompany students from the GNC development to its qualifica-

tion through Software and Processor-in-the-Loop to its deployment on flight hardware.

These tools and methods have demonstrated their e�ectiveness in three di�erent projects: the first

one is a small UAV which demonstrated controlled flight and position tracking, the second one is a

GNC for a sounding rocket that was developed and tested to a flight-ready level, and the last one is

a research GNC project on thrust vector control which went through its first phase of development

in a simulation environment to assess its performance and value for the EPFL Rocket Team.

Unfortunately, due to lack of time and canceled rocket launches, the two GNC developed for

sounding rockets were not tested during flight. The focus of this thesis was thus on ground testing

and qualification to demonstrate that with the proper tools, a large part of this process can be done

without flight tests. Nevertheless, it is critical that the results obtained through simulations are

validated with the upcoming rocket launches to qualify both the GNC and the method proposed

in this thesis.

Besides these results, additional work may be needed in the future to complete the simulator with

new features for better physics modeling, new tools for analysis, and a more intuitive user interface.

One of the major default of this tool is its complexity that could limit inexperienced students to

use it. Adding scripts to simplify the installation and automate repetitive tasks could help this.

Overall, this project was a great experience in learning how to develop GNC algorithms and the

process of qualifying them for aerospace application. Besides some setbacks during the project,

the results obtained demonstrate the added value of this tool for the EPFL Rocket Team and will

hopefully encourage students to use it in their future projects.

82

Appendix A

INS ground test procedure

83

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

1 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

INS PERFORMANCE
Filename: 2021_TVC_TP_INS_PERFORMANCE.docx

Prepared by: Albéric de Lajarte

Checked by:

Approved by:

REVISION HISTORY

Revision Description Date

Baseline First complete draft 29/03/2021
Rev. 02 Updated dynamic test procedure 05/05/2021
Rev. 03 Result of test 1, 2 and 3 15/05/2021

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

2 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

TABLE OF CONTENTS
1 INTRODUCTION .. 3
2 REFERENCE DOCUMENTS .. 3
3 DEFINITIONS AND ABBREVIATIONS .. 3
4 VERIFICATION PROCESS .. 4

4.1 VERIFICATION OBJECTIVES ... 4
4.2 VERIFICATION METHOD .. 4
4.3 TEST PROCEDURES ... 4
4.4 TEST CONDITIONS .. 5
4.5 TEST SETUP AND EQUIPMENT ... 5
4.6 STEP-BY-STEP TEST PROCEDURE ... 5
4.7 PASS-FAIL CRITERIA ... 6

5 TESTS RESULTS ... 7

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

3 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

1 INTRODUCTION

To estimate the full state of the rocket during the flight, an Inertial Navigation System (INS) is
developed. This algorithm simply integrates IMU data to estimate orientation, velocity and
position in real time.
A Kalman filter on altitude and vertical velocity is added to correct these two states with a
barometer.
This algorithm having no model of the rocket, it is very simple to test on the ground, but has
the problem of being very dependent on good sensor data for good performances.
This test aims to assess the performance of this algorithm for basic, known motions.

2 REFERENCE DOCUMENTS

Table 2-1 Reference Documents

Ref Description Doc. Number Issue

[RD01] [RD02] Acceptance REDV test
procedure.pdf

S3-D-SET-1-
2

1.0

3 DEFINITIONS AND ABBREVIATIONS

RD Reference Document
GNC Guidance, Navigation and Control
INS Inertial Navigation System
MPC Model predictive Control
ROS Robot Operating System
TVC Thrust Vector Control

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

4 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

4 VERIFICATION PROCESS

4.1 Verification objectives

The first objective of this test is to quantify the drift of the orientation, velocity and position
estimates over time due to sensor bias.
The second objective is to measure its precision in orientation and position.

4.2 Verification method

To find the drift over time, the avionics is firstly kept still in a fixed position and orientation for
around 30s. In a second test, the avionics is moved and rotated by hand during 30s, then
brought back to the initial orientation and position to assess the influence of motion on drift.
For the precision test, the avionics is constrained to move along a simple predefined path.
The measured position and orientation are compared to the predicted one to find the
precision.

4.3 Test procedures

The complete avionics is used, with the sensor board mounted on its structure. The GNC
module is integrated on the AV stack. The AV stack is mounted on its structural module on
which modified coupler with squared features are attached to provide a square reference.

Figure 1: Avionic module with integrated IMU and barometer

The GNC algorithms are running on a Raspberry pi 4 compute module, and all data are
logged using the ROS logging tools.
The automatic calibration routine is used to estimate the accelerometers and gyroscope bias
by comparing their measurement to the known initial pose.

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

5 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

4.4 Test conditions

The test is done on a flat and horizontal table. Two perpendicular surfaces are attached to
the table to provide a reference.
A last test is made in the MED building to test the overall behavior of the algorithm by moving
the module back and force along the stairs.

4.5 Test setup and equipment

Reference setup:

A straight beam is fixed to a flat and horizontal marble table. Using shims and an
inclinometer, the table can be made horizontal with a precision of less than 0.2°.
The beam provides another reference surface at 90° to the marble table on which the
avionics module will be slide on.
Two other blocs at both end of the table are used to provide mechanical stops and thus a
length reference of 50cm.

MED setup:
The module is initialized on a flat table at the bottom of the stairs. A person carries the
module up and down the stairs, and the altitude and vertical velocity of the module are
monitored in real time by a user at the ground station.

Equipment:

❏ Flat table
❏ Inclinometer
❏ Clamp (x2)
❏ Square bloc (x2)
❏ Rubber hammer
❏ Ground station software

4.6 Step-by-step test procedure

1. Static drift test

1.1. Position the AV vertically module on the flat table, +X axis on the direction of the track
(initial pose)

1.2. Power it on and wait 10s.
1.3. Start the GNC algorithms: “bellalui_flight.launch”. Wait for the calibration to finish (5s)
1.4. Lightly hit the module with a soft hammer to create an acceleration higher than 1.5g
1.5. Wait 30s in without moving the module
1.6. Stop the GNC algorithms and the AV. Retrieve the log file.

2. Dynamic drift test

2.1. Position the AV vertically module on the flat table, +X axis on the direction of the track
(initial pose)

2.2. Start the GNC algorithms: “bellalui_flight.launch”. Wait for the calibration to finish (5s)
2.3. Lightly hit the module with a soft hammer to create an acceleration higher than 1.5g

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

6 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

2.4. Move the module by hand to create rotations in all axes of less than 30° at a rate of
roughly 1Hz, and translations of less than 50cm in all axes

2.5. Stop the GNC algorithms and the AV. Retrieve the log file.

3. Dynamic precision test
3.1. Position the AV vertically module on the flat table, +X axis on the direction of the track

(initial pose)
3.2. Start the GNC algorithms: “bellalui_flight.launch”. Wait for the calibration to finish (5s)
3.3. Lightly hit the module on the Z axis with a soft hammer to create an acceleration higher

than 1.5g
3.4. Move the module along the +X axis for 30cm (track length), and back to its original

pose (-X translation) in less than 5s
3.5. Stop the GNC algorithms. Retrieve the log file.
3.6. Repeat the procedure to test each axis in the same manner, making sure to restart the

algorithm between each test, and to modify the initial pose in the GNC configuration

4. Full motion test
4.1. Position the AV vertically module on the flat table, marking the direction of the X axis

and the initial 3D position.
4.2. Power on the module and wait 10s.
4.3. Activate the Raspberry pi from the ground station. Wait until seeing 1mm as initial

position in the ground station software
4.4. Lightly hit the module on the Z axis with a soft hammer to create an acceleration higher

than 1.5g
4.5. Start logging the data on the ground station software
4.6. Carry the module up the stairs at normal walking speed. Turn around and go down the

stairs to carry the AV module at its initial pose.
4.7. Stop the GNC, AV and GS. Retrieve all logging files.

4.7 Pass-fail criteria

Test Pass Fail

Attitude drift
- The pitch and yaw and roll
angles are kept below 5°
during the two drifts test

- The orientation diverges
from vertical (more than 5°)

Translation drift

- The X and Y position are
below 50m for the two drift
tests.
- The Z position is below 2m
for the two drift tests.
- The Z speed is below 1m/s
for the two drift tests.

- The X and Y position
diverges above 50m
- The Z position diverges
above 2m
- The Z speed diverges
above 1m/s

Position precision (test
3)

- Each axis should have a
postion error of less than 50cm
- The residual speed should be
below 1m/s

- The position error is larger
than 50cm
- The speed has drifted
above 1m/s at the end of
the test

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

7 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

5 TESTS RESULTS

Test 1:

The first test lasted 3min of continuous integration. The attitude, vertical velocity and altitude
showed very good results, while the lateral positions and velocities drifted quickly away from
the reference.

Figure 2: Position (top), Velocity (middle) and Euler angles (bottom) as a function of time in

seconds

We see that the vertical velocity and altitude are very stable thanks to the barometer correction.
The attitude is also acceptable, staying below 5° for a typical flight duration (30s).
However the horizontal position drifts too quickly, making its estimates unusable.

 PROJECT ICARUS
EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

25 Jun. 21

8 of 8

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

Test 2:

The test lasted 60s, with 40s of dynamic phase. The biggest difference was on the attitude
estimation which performed significantly worst, accumulating a bias after the dynamic phase.

Figure 3: Position, velocity, attitude and angular rate as a function of time

We see that two of the three Euler angles drifted to ±20° after the dynamic phase. This could
be corrected by increasing the sampling frequency or the calibration time.
The position and velocity estimates have similar performance.

Criteria Pass / Fail Reason

Attitude drift Pass
X/Y translation drift Fail Accelerometer errors accumulates too

quickly. Need a better calibration method
Z position drift Pass
Z speed drift Pass

Criteria Pass / Fail Reason

Attitude drift Fail Bias after dynamic phase
X/Y translation drift Fail Accelerometer errors accumulates too

quickly. Need a better calibration method
Z position drift Pass
Z speed drift Pass

Appendix B

TVC trade-o�

Figure B.1: Definition of the criteria

Figure B.2: Ranking of the criteria

84

Figure B.3: Ranking of the criteria

TVC trade-o� 85

Appendix C

Drone test procedure

86

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

1 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

DRONE DOME TEST FLIGHT
Filename: 2021_TVC_TP_DroneDomeTestFlight_R01.docx

Prepared by: Albéric de Lajarte

Checked by: Raphaël Linsen

Approved by: Peter Listov

REVISION HISTORY

Revision Description Date

Baseline First complete draft 29/03/2021
Rev. 02 a. Minor formulation corrections 31/03/2021

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

2 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

TABLE OF CONTENTS

1 INTRODUCTION 3
1 REFERENCE DOCUMENTS 3
2 DEFINITIONS AND ABBREVIATIONS 3
2 VERIFICATION PROCESS 4

2.1 VERIFICATION OBJECTIVES 4
2.2 VERIFICATION METHOD 4
2.3 TEST PROCEDURES 4
2.4 TEST CONDITIONS 5
2.5 TEST SETUP AND EQUIPMENT 5
2.6 STEP-BY-STEP TEST PROCEDURE 6
2.7 PASS-FAIL CRITERIA 7

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

3 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

1 INTRODUCTION

This test is the first flight of the Thrust Vector Control team’s drone. It aims at testing the
performance of the MPC controller in a safe and controlled environment developed especially
for drone testing.
This test being a first for the team, it is necessary that the drone is first fully characterized, and
the MPC controller tested extensively in both simulation and static test bench prior to drone
dome testing.

1 REFERENCE DOCUMENTS

Table 2-1 Reference Documents

Ref Description Doc. Number Issue

[RD01] [RD02] Acceptance REDV test
procedure.pdf

S3-D-SET-1-
2

1.0

2 DEFINITIONS AND ABBREVIATIONS

RD Reference Document
GNC Guidance, Navigation and Control

MPC Model predictive Control
TVC Thrust Vector Control

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

4 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

2 VERIFICATION PROCESS

2.1 Verification objectives

The first goal of this test is to verify the ability of the controller to stabilize the drone in the
vertical orientation.
The secondary objective is to track a constant 3D position required by the user.
The last objective is to assess the performance of the embedded navigation algorithm by
comparing it to the reference tracking system.

2.2 Verification method

The attitude and position of the drone are measured by an optical tracking system that provides
a reference to measure the stability of the attitude and the precision of its position.

2.3 Test procedures

The MPC controller is used on the drone V1, shown in figure 1.

Figure 1: Version 1 of the test drone

The following components will be used:
Component Reference
ESC battery (x1) LiPo 6 cell, 1400mAh, 120C (Tattu R-line)
Board battery (x1) LiPo 3 cell, 1000mAh
ESC (x2) HGLRC ESC 35A 3-6S T-REX
Motor (x2) Avenger 2306.5 V3, 2000KV
Propeller (x2) 5.1x3, pitch 4.2 (R42)

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

5 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

Servomotors (x2) Futaba S3305
Sensor board STEVAL-FCU001V1
Processing board Raspberry pi 4 model B, 4GB

The following characteristics have been measured:

Parameter Value
Drone total mass 1.533 kg
Inertia 0.0623, 0.0669, 0.0130 kg/m2

Outer dimensions 25x19x53 cm
Center of mass height 20.5 cm

2.4 Test conditions

The test will be indoor, in a closed net of approximately 10x10 m2 and 5m high.
The position of the drone will be limited by a tether to a 1 m radius horizontally and 3 m distance
vertically. Each test can last a maximum of 2.5 minutes due the limited capacity of the battery.

2.5 Test setup and equipment

Safety setup:
A cord is attached at the top and bottom of the drone’s structure. The cord forms a loop that
passes through the roof’s structure and a heavy table at the bottom. These two rigid points
ensure the drone’s movements are restrained horizontally, but don’t restrain its vertical
motion. One person is in charge of managing the tension of the loop, in order to block the
drone in case of a controller failure.

Figure 2: Safety setup. The outer rectangle is the large net of the drone dome

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

6 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

The person managing the cord inside the net needs to wear safety gloves and goggles.

Tracking setup:

The opti-track is used to track small reflective balls fixed on the drone. The balls and
the camera are already calibrated, so no recalibration is necessary if the tracking precision is
deemed sufficient.

Equipment:

❏ 20 m long cord
❏ scissors
❏ Safety goggles (x4)
❏ Safety gloves (x1)
❏ Ear plug (x4)
❏ Battery charger
❏ Backup ESC batteries (x2) and board batteries (x2)
❏ 5V Raspberry Pi charger
❏ Spanner M4 and M5
❏ Allen keys
❏ Electrical tape and zip-ties
❏ Multimeter
❏ Spare propellers
❏ Level

2.6 Step-by-step test procedure

1. Optitrack and ground station setup
1.1. Setup optitrack on the local workstation
1.2. Make the drone connect itself to the optitrack server’s wi-fi
1.3. Connect a laptop to the optitrack server’s wi-fi and check that the SSH and ROS

connections are working to the drone
1.4. Launch optitrack on the local workstation
1.5. Launch the ROS GUI on the laptop and check that the drone orientation and position

are being received

2. Drone setup

2.1. Install the safety cord on the drone and on the room’s structure
2.2. Position the drone on the ground with the sensor board frame in the same orientation

as the Optitrack frame
2.3. Power on the drone while minimizing vibrations on the sensor board (IMU calibration)
2.4. Verify that the estimated drone orientation, position and velocity are coherent

3. Tethered test

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

7 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

3.1. Plug the ESC batteries and place the drone at its target position by hanging it from the
cord

3.2. Start the flight controller from the ground station with 25% thrust limit
3.3. Verify proper actuation of the servomotors and motors by balancing the drone like a

pendulum in each axis of rotation

4. Stability test
4.1. Plug the ESC batteries and place the drone at its target position by hanging it from the

cord
4.2. Start recording all flight data. Start filming the flight
4.3. Start the flight controller from the ground station with 80% thrust limit
4.4. Prepare to stop the test in case of controller failure or empty battery
4.5. Repeat this test until 3 stable flight as defined in 4.7 have been demonstrated

5. Altitude tracking

5.1. Plug the ESC batteries and place the drone 2 meters away from its target altitude
5.2. Start recording all flight data. Start filming the flight
5.3. Start the flight controller from the ground station
5.4. Prepare to stop the test in case of controller failure or empty battery
5.5. Repeat this test until 3 precise flight as defined in 4.7 have been demonstrated

6. 3D position tracking

6.1. Plug the ESC batteries and place the drones 2 meters away from its targeted position
6.2. Start recording all flight data. Start filming the flight
6.3. Start the flight controller from the ground station
6.4. Prepare to stop the test in case of controller failure or empty battery
6.5. Repeat this test until 3 precise flight as defined in 4.7 have been demonstrated

7. End of test

7.1. Stop the flight controller.
7.2. Unplug all batteries connected to the drone and store them
7.3. Retrieve all flight data
7.4. Tidy up the room and equipment

2.7 Pass-fail criteria

Test Pass Fail

Attitude stabilization

- The pitch and yaw are kept
below 10° during the whole
test
- The roll angle is kept below
90° during the whole test
- The angular rates are all
below 20°/s
- The drone’s position doesn’t
deviate more than 0.5 m

- The orientation diverges
from vertical and the drone
loses stability.
- The drone oscillates at
high rate around the vertical
orientation
- The drone position
diverges from the initial
position

 PROJECT ICARUS

EPFL Rocket Team

TEST PROCEDURE

Doc-No:

Date:

Page:

2021_TVC_TP_DD

01 Apr. 21

8 of 9

© EPFL Rocket Team 2021. This document shall not be used for other purposes than those for which it was established. No
unauthorized distribution, dissemination or disclosure.

Altitude tracking

- The attitude stabilization
works as defined above
- The desired altitude is
reached with a precision of 10
cm
- The settling time is less than
5s

- The drone loses stability
(as defined above) when
moving
- The steady state error is
larger than 10cm, or grows
over time
- The drone oscillates
indefinitely around its target

3D position tracking

- The attitude stabilization
works as defined above
- The desired position is
reached with a precision of 10
cm
- The settling time is less than
5s

- The drone loses stability
(as defined above) when
moving
- The steady state error is
larger than 10cm, or grows
over time
- The drone oscillates
indefinitely around its target

References

[1] I. Sprenger, ‘Integration of a low-cost microprocessor for a sounding rocket’s avionics,’
Semester project, 2021 (cit. on pp. 8, 77).

[2] M. Quigley, B. Gerkey and K. Conley, ‘Ros: An open-source robot operating system,’ ICRA

Workshop on Open Source Software, 2009 (cit. on pp. 10, 13).

[3] E. Brunner and E. Mingard, ‘Simulation avancée de la trajectoire d’une fusée et application
à du contrôle actif,’ Semester project, 2018 (cit. on pp. 15, 20, 57).

[4] P. Zipfel, ‘Six-degrees-of-freedom simulation,’ in Modeling and Simulation of Aerospace Vehicle

Dynamics. American Institute of Aeronautics and Astronautics, 2007, pp. 367–400 (cit. on
p. 18).

[5] ——, ‘Inertial navigation system,’ in Modeling and Simulation of Aerospace Vehicle Dynam-

ics. American Institute of Aeronautics and Astronautics, 2007, pp. 428–439 (cit. on p. 22).

[6] M. Franze, ‘Shefex ii - a first aerodynamic and atmospheric post-flight analysis,’ in AIAA

Atmospheric Flight Mechanics Conference. doi: 10.2514/6.2016- 0786. eprint: https:
//arc.aiaa.org/doi/pdf/10.2514/6.2016-0786. [Online]. Available: https://arc.
aiaa.org/doi/abs/10.2514/6.2016-0786 (cit. on p. 32).

[7] S. Niskanen, Development of an open source model rocket simulation software, master thesis,
2009 (cit. on p. 33).

[8] ‘Team 35 project technical report for the 2018 irec,’ Project report, 2018 (cit. on p. 34).

[9] ‘Team 54 project technical report for the 2019 irec,’ Project report, 2019 (cit. on p. 34).

[10] B. Braun, J. Barf and M. Markgraf, ‘Integrated navigation using mems-based inertial, gps
and sun vector measurements aboard the spin-stabilized pmwe-1 sounding rocket,’ 8TH
EUROPEAN CONFERENCE FOR AERONAUTICS and SPACE SCIENCES, 2019 (cit.
on p. 36).

[11] U. KAYASAL, Modeling and simulation of a navigation system with an imu and a magne-

tometer, master thesis, 2007 (cit. on p. 36).

[12] S. M. Bezick, A. J. Pue and C. M. Patzelt, Inertial Navigation for Guided Missile Systems,
4. 2010, vol. 28, pp. 331–342 (cit. on p. 37).

[13] B. Graf, Quaternions and dynamics, 2008. arXiv: 0811.2889 [math.DS] (cit. on p. 37).

87

https://doi.org/10.2514/6.2016-0786
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-0786
https://arc.aiaa.org/doi/pdf/10.2514/6.2016-0786
https://arc.aiaa.org/doi/abs/10.2514/6.2016-0786
https://arc.aiaa.org/doi/abs/10.2514/6.2016-0786
https://arxiv.org/abs/0811.2889

[14] R. E. KALMAN, ‘A new approach to linear filtering and prediction problems,’ Journal of

Basic Engineering, vol. 80D, pp. 33–45, 1960 (cit. on p. 39).

[15] C. S. Alexander, ‘Dynamic response of a carbon fiber - epoxy composite subject to planar
impact,’ 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, 2012 (cit. on
p. 41).

[16] P. Listov and C. Jones, ‘Polympc: An e�cient and extensible tool for real-time nonlinear
model predictive tracking and path following for fast mechatronic systems,’ 2019 (cit. on
p. 45).

[17] ‘Sequential quadratic programming,’ in Numerical Optimization. New York, NY: Springer
New York, 2006, pp. 529–562, isbn: 978-0-387-40065-5. doi: 10.1007/978-0-387-40065-
5_18 (cit. on p. 45).

[18] H. Tsien and R. C. Evans, ‘Optimum thrust programming for a sounding rocket,’ Journal of

the American ROCKET Society, vol. 21, no. 5, pp. 99–107, 1951 (cit. on p. 45).

[19] A. Jnini and C. Chetcuti, ‘Developement d’une stratégie de controle pour les airbrakes de la
fusée de la rocket team,’ Semester project, 2019 (cit. on p. 46).

[20] M. S. Francis, ‘Air vehicle management with integrated thrust-vector control,’ AIAA Journal,
vol. 56, no. 12, pp. 4741–4751, 2018. doi: 10.2514/1.J056768 (cit. on p. 56).

[21] T. Raziye, Design, modeling, guidance and control of a vertical launch surface to air missile,
master thesis, 2010 (cit. on p. 56).

[22] L. Blackmore, ‘Autonomous precision landing of space rockets,’ National Academy of En-

gineering ’The Bridge on Frontiers of Engineering’, vol. 4, no. 46, pp. 15–20, 2016 (cit. on
p. 56).

[23] T. Grosgurin, ‘Introduction to cfd for supersonic flight,’ Semester project, 2019 (cit. on p. 57).

[24] Tripoli Safety Codes and policies, Tripoli rocketry association safe launch practices, 2013
(cit. on p. 58).

[25] M. Sagliano, T. Tsukamoto and J. A. Macés-Hernández, ‘Guidance and control strategy for
the callisto flight experiment,’ 8TH EUROPEAN CONFERENCE FOR AERONAUTICS
and AEROSPACE SCIENCES (EUCASS), 2019 (cit. on p. 59).

[26] R. Linsen, ‘Thrust vector control of a small-scale rocket prototype,’ Semester project, 2021
(cit. on pp. 64, 66, 73).

[27] ‘Fundamentals of unconstrained optimization,’ in Numerical Optimization. New York, NY:
Springer New York, 2006, pp. 26–27, isbn: 978-0-387-40065-5. doi: 10.1007/978-0-387-
40065-5_18 (cit. on p. 64).

[28] B. RMILI, D. MONCHAUX and O. BOISNEAU, ‘Frog, a rocket for gnc demonstrations:
Firsts flights attempts of the frog turbojet version and preparation of the future mono-
propellant rocket engine,’ 8TH EUROPEAN CONFERENCE FOR AERONAUTICS and
AEROSPACE SCIENCES (EUCASS), 2019 (cit. on p. 73).

REFERENCES 88

https://doi.org/10.1007/978-0-387-40065-5_18
https://doi.org/10.1007/978-0-387-40065-5_18
https://doi.org/10.2514/1.J056768
https://doi.org/10.1007/978-0-387-40065-5_18
https://doi.org/10.1007/978-0-387-40065-5_18

[29] T. LaMarca, ‘Jet vanes characterization and optimization,’ Semester project, 2021 (cit. on
p. 78).

[30] A. Muller, ‘Tvc test bench semester project,’ Semester project, 2021 (cit. on p. 79).

[31] U. Qayyum, ‘Thermal cfd analysis of thrust vector control jet vanes & materials character-
ization,’ Semester project, 2021 (cit. on p. 79).

REFERENCES 89

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Table of Contents
	Introduction
	GNC Architecture
	Objectives
	Hardware architecture
	GNC module

	Software architecture
	Overview
	Navigation
	Guidance
	Control
	Time synchronization

	ROS framework
	GNC package

	Simulator
	Features
	Rigid body simulation
	Aerodynamics effects
	Perturbations
	Sensor simulation
	Hardware connection

	Validation
	Unit test
	Flight test

	Altitude control
	Mission overview
	Motivation
	Interface

	GNC algorithms
	Navigation
	INS Model
	Kalman filter
	Delay compensation

	Guidance
	MPC model
	Apogee prediction

	Implementation and qualification
	Simulation
	Monte Carlo simulation

	Hardware test
	Processor-in-the-loop setup
	Sensor validation

	Trust Vectoring Control
	Motivation
	Guidance and Control of a TVC system
	Control strategy
	Guidance, Navigation and Control
	Control formulation
	Implementation and Results

	Conclusion

	Flight model development
	Technology trade-off
	Drone model
	Mechanical design
	Electronic design
	Conclusion

	Jet vane model
	Mechanical design
	Electronic design
	Jet vane model
	Thermal analysis
	Summary

	Conclusion
	INS ground test procedure
	TVC trade-off
	Drone test procedure

